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The primary purpose of these notes is to give a self-contained discussion on
the construction of Haar measures and Haar integrals on locally compact Haus-
dorff groups. The most important examples one should keep in mind are finite
dimensional Lie groups such as the special linear group SL2(R). As an application
of these basic tools, we develop the elegant Fourier analysis (the L2-theory) on
compact Hausdorff groups (the Peter-Weyl theorem), which generalises the clas-
sical theory of Fourier series on the unit circle (the abelian case). Our approach
to Haar integration follows the main lines of [3, 4]. Our discussion on non-abelian
Fourier analysis is largely inspired by [1, 5, 6].
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1 The Riesz-Markov-Kakutani representation the-
orem

Formally speaking, a measure µ on a space X induces a linear functional

λµ : f 7→
∫
X

fdµ

on a suitable space C of functions over X. This functional is positive in the sense
that

f > 0 =⇒ λµ(f) > 0.

The Riesz-Markov-Kakutani representation theorem asserts that the converse is
also true, namely, all positive linear functionals on C arise in this way. This gives
us a powerful way of constructing measures on X from the duality viewpoint of
linear functionals, which is also the approach of constructing Haar measures on
locally compact Hausdorff groups that we will adopt in the present notes.

To set up the framework properly, throughout the rest of this section we assume
thatX is a locally compact, Hausdorff space and B(X) denotes the Borel σ-algebra
over X (i.e. the σ-algebra generated by open subsets of X). We use Cc(X) to
denote the space of complex-valued continuous functions on X with compact
support.

Remark 1.1. Working with locally compact Hausdorff spaces allows us to construct
sufficiently many continuous functions with compact support. These functions
play essential roles in our study.

Definition 1.1. A measure µ : B(X) → [0,∞] is called a Radon measure if it
satisfies the following properties:

(i) Outer regularity : for any A ∈ B(X), one has

µ(A) = inf{µ(V ) : V open, V ⊇ A}; (1.1)

(ii) Inner regularity : for any open subset V, one has

µ(V ) = sup{µ(K) : K compact, K ⊆ V };

(iii) Finiteness on compact sets :

µ(K) <∞ for any compact subset K.
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Remark 1.2. In the same way, one can also define the notion of Radon measures
on σ-algebras containing B(X).

Definition 1.2. A positive linear functional λ on Cc(X) is a (complex-valued)
linear functional λ : Cc(X)→ C such that

f real, f > 0 =⇒ λ(f) > 0.

Let µ be a Radon measure on X. Then µ induces a linear functional on Cc(X)
defined by integration:

λµ(f) ,
∫
X

fdµ, f ∈ Cc(X). (1.2)

This functional is clearly positive. The Riesz-Markov-Kakutani representation
theorem (in what follows, we simply refer to it as the RMK representation the-
orem) asserts that every positive linear functional on Cc(X) is the integration
against a Radon measure.

Theorem 1.1. Let λ : Cc(X) → C be a positive linear functional. Then there
exists a unique Radon measure µ on B(X), such that

λ(f) =

∫
X

fdµ, f ∈ Cc(X).

1.1 Some notation and a key property of Radon measures

We start by discussing a key property of Radon measures which motivates the
strategy of proving the representation theorem.

Let us first introduce some notation which will be used throughout the rest.
Let K be a compact subset of X. We use K ≺ f to mean that

f ∈ Cc(X), 0 6 f 6 1 on X and f = 1 on K. (1.3)

Similarly, let V be an open subset of X. We use f ≺ V to mean that

f ∈ Cc(X), 0 6 f 6 1 on X and f is supported in V.

As a result, given K ⊆ V, the notation K ≺ f ≺ V means

f ∈ Cc(X), 1K 6 f 6 1V .

The following lemma is a simple application of Urysohn’s lemma (cf. Theorem
B.2 in Appendix B). It is a useful tool for producing rich continuous functions on
topological spaces.
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Lemma 1.1. Let K ⊆ V where K is compact and V is open. Then there exists
f ∈ Cc(X) such that K ≺ f ≺ V .

Proof. We first claim that, there exists an open subset W such that K ⊆ W ⊆
W ⊆ V and W is compact. Indeed, for each x ∈ K one finds a compact neigh-
bourhood Wx of x such that Wx ⊆ V . By the compactness of K, one covers K
by finitely many such Wx’s, whose union gives the desired open subset W .

Now since W is a compact Hausdorff space (hence normal), one can apply
Urysohn’s lemma on it. More precisely, note that W c ∩ W is a closed subset
disjoint from K. According to Urysohn’s lemma, one finds a continuous function
g : W → [0, 1] such that g = 1 on K and g = 0 on W c ∩ W. The function g
trivially extends to a continuous function f : X → [0, 1] by setting f = 0 on W c

.
The function f satisfies the desired properties.

Remark 1.3. The technical complication in the above proof comes from the fact
that a locally compact Hausdorff space may fail to be normal in general. Therefore,
some care is needed when applying Urysohn’s lemma.

The next property is the key observation for motivating the proof of Theorem
1.1.

Proposition 1.1. Let µ be a Radon measure on X and let V be an open subset
of X. Then one has

µ(V ) = sup
{
λµ(f) : f ≺ V

}
, (1.4)

where λµ is the linear functional defined by (1.2).

Proof. It is trivial that µ(V ) is an upper bound of λµ(f) for any f ≺ V. To see
that it is indeed the supremum, we only consider the case when µ(V ) < ∞ and
leave the similar discussion of the other case to the reader. According to inner
regularity, given ε > 0, there exists a compact subset K ⊆ V such that

µ(K) > µ(V )− ε.

By using Lemma 1.1, one can choose an f ∈ Cc(X) such that K ≺ f ≺ V. It
follows that

λµ(f) > µ(K) > µ(V )− ε.
Therefore, µ(V ) is the supremum of {λµ(f) : f ≺ V }.

The above result gives the uniqueness part of Theorem 1.1 trivially. Indeed,
if µ and ν are two Radon measures satisfying the theorem, the property (1.4)
implies that µ = ν on open subsets. According to the outer regularity property,
one concludes that µ = ν on B(X).
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1.2 Proof of the representation theorem

The property (1.4) is also the key for motivating the proof of existence. The main
strategy can be summarised as follows. Let λ : Cc(X) → C be a given positive
linear functional.

Step one. Use the formula (1.4) and the outer regularity property to construct an
outer measure µ on all subsets of X.
Step two. Identify a suitable σ-algebra M that contains B(X), such that the
restriction of µ onM is a Radon measure.
Step three. Show that the linear functional induced by integration against µ
coincides with λ.

In what follows, we develop these three steps carefully.

1.2.1 Step one: constructing the outer measure

Inspired by (1.4) and the outer regularity property (1.1), we define a set function
µ on all subsets of X by

µ(A) , inf{µ(V ) : V open, V ⊇ A}, A ⊆ X,

where for any open subset V we define

µ(V ) , sup
{
λ(f) : f ≺ V

}
.

Lemma 1.2. The set function µ is an outer measure over X.

The proof of Lemma 1.2 relies on Dini’s theorem and a continuity property of
positive linear functions which we now discuss.

Theorem 1.2 (Dini’s theorem). Let f ∈ Cc(X) be a given non-negative function.
Let Φ be a family of non-negative functions in Cc(X) which satisfies the following
properties:

(i) for any ϕ ∈ Φ, one has ϕ 6 f ;
(ii) for any ϕ, ψ ∈ Φ, one has ϕ ∨ ψ , max{ϕ, ψ} ∈ Φ;
(iii) Φ approximates f pointwisely in the sense that

sup
ϕ∈Φ

ϕ(x) = f(x) ∀x ∈ X.

Then for any ε > 0, there exists ϕ ∈ Φ, such that

‖f − ϕ‖∞ < ε.
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Proof. Let K be the support of f. According to Property (iii), for each x ∈ K,
there exists ϕx ∈ Φ such that

f(x)− ϕx(x) < ε.

By continuity, one finds an open neighbourhood Vx of x, such that

f(y)− ϕx(y) < ε ∀y ∈ Vx.

Since K is compact, it is covered by finitely many such neighbourhoods, say
Vx1 , · · · , Vxn . Define

ϕ , max{ϕx1 , · · · , ϕxn}.

Note that ϕ ∈ Φ by Property (ii). For any y ∈ K, one has y ∈ Vxi for some i, and
thus

0 6 f(y)− ϕ(y) 6 f(y)− ϕxi(y) < ε.

Remark 1.4. A useful form of Dini’s theorem is the case when Φ is given by an in-
creasing sequence of non-negative Cc(X)-functions that approaches f pointwisely.
The theorem says that one automatically has uniform convergence for the family.

Proposition 1.2. Let λ : Cc(X) → C be a positive linear functional. For any
compact subset K, let CK(X) be the subspace of Cc(X) containing those functions
supported in K. Then λ|CK(X) is a continuous linear functional.

Proof. By considering the real and imaginary parts separately, one may assume
without loss of generality that λ and the involved functions are real-valued.
Choose a function g ∈ Cc(X) such that K ≺ g, whose existence is guaranteed
by Lemma 1.1. For any real-valued f ∈ CK(X), one has

−‖f‖∞g 6 f 6 ‖f‖∞g.

It follows from the positivity of λ that

|λ(f)| 6 ‖f‖∞ · λ(g).

Therefore, λ is bounded on CK(X).

Now we are able to give the proof of Lemma 1.2.
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Proof of Lemma 1.2. The fact that µ(∅) = 0 and

A ⊆ B =⇒ µ(A) 6 µ(B)

are both obvious. The main challenge is to verify countable sub-additivity. We
first establish finite sub-additivity on open subsets, and then extend this to the
general case by a standard ε

2n
-series argument.

Let V1, V2 be two open subsets of X and let f ≺ V1 ∪ V2. One needs to show
that

λ(f) 6 µ(V1) + µ(V2). (1.5)

The idea is to use Dini’s theorem for f . To this end, let

Φ , {ϕ1 ∨ ϕ2 : ϕ1 ≺ V1, ϕ2 ≺ V2},

and define
Φf , {f ∧ ϕ , min{f, ϕ} : ϕ ∈ Φ}.

We first check that the family Φf satisfies the conditions of Dini’s theorem. Prop-
erty (i) is trivial. Property (ii) follows from the identity(

f ∧ (ϕ1 ∨ ϕ2)
)
∨
(
f ∧ (ψ1 ∨ ψ2)

)
= f ∧

(
(ϕ1 ∨ ψ1) ∨ (ϕ2 ∨ ψ2)

)
,

where ϕi, ψi ≺ Vi (i = 1, 2). As for Property (iii), fix x ∈ K , suppf, and say
x ∈ V1. Choose ϕ1 ≺ V1 such that ϕ1(x) = 1. Then one has

ϕ , f ∧ (ϕ1 ∨ 0) ∈ Φh, ϕ(x) = f(x).

Therefore, f = supϕ∈Φh
ϕ. According to Dini’s theorem and the continuity of λ

on CK(X), one has

λ(f) = λ
(

sup
ϕ∈Φf

ϕ
)

= sup
ϕ∈Φf

λ(ϕ) = sup
ϕi≺Vi (i=1,2)

λ(f ∧ (ϕ1 ∨ ϕ2))

6 sup
ϕi≺Vi (i=1,2)

λ(f ∧ ϕ1 + f ∨ ϕ2)

6 sup
ϕ1≺V1

λ(f ∧ ϕ1) + sup
ϕ2≺V2

λ(f ∧ ϕ2)

6 µ(V1) + µ(V2).

The claim (1.5) then follows.
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Now we prove countable additivity. Let {An : n > 1} be a sequence of subsets
of X, and suppose that µ(An) < ∞ for all n (the other case is trivial). By the
definition of µ, for each ε and n there exists an open subset Vn ⊇ An such that

µ(Vn) < µ(An) +
ε

2n
.

Define the open subset V , ∪∞n=1Vn. For any f ≺ V , since f is compactly sup-
ported, there exists N such that

f ≺ V1 ∪ · · · ∪ VN .

It follows that

λ(f) 6 µ(V1 ∪ · · · ∪ VN) 6 µ(V1) + · · ·+ µ(VN)

6
∞∑
n=1

(
µ(An) +

ε

2n
)

=
∞∑
n=1

µ(An) + ε.

Since f is arbitrary, one concludes that

µ
(
∪∞n=1 An

)
6 µ(V ) 6

∞∑
n=1

µ(An) + ε.

This gives the countable additivity property as ε is arbitrary.

1.2.2 Step two: restricting µ to a Radon measure

The next step is to restrict µ to a σ-algebra containing B(X) and show that
the restriction is indeed a Radon measure. We could proceed along the abstract
measure-theoretic approach of Carathéodory’s extension theorem. However, this
approach does not seem to be the simplest in the current context, as it is too
general and does not reflect any topological considerations that are needed here.
Instead, we try to write down the σ-algebra explicit in the way under which the
Radon property becomes transparent.

Introduction of a ring

We first define the following class of subsets:

A ,
{
A ⊆ X : µ(A) <∞ and µ(A) = sup{µ(K) : K compact, K ⊆ A}

}
.
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Lemma 1.3. The set class A satisfies the following properties.

(i) A contains the class of compact sets.
(ii) If V is open and µ(V ) <∞, then V ∈ A.
(iii) The restriction of µ on A is countably additive. More precisely, if {An : n >
1} is a disjoint sequence of subsets in A and A , ∪∞n=1An, then

µ(A) =
∞∑
n=1

µ(An).

In addition, if µ(A) <∞, one also has A ∈ A.
(iv) A is a ring, i.e. ∅ ∈ A, and

A,B ∈ A =⇒ A ∪B ∈ A, A\B ∈ A.

Proof. (i) Let K be a compact subset. One only needs to show that µ(K) < ∞.
For this purpose, let V be an open subset such that K ⊆ V and V is compact.
Pick g ∈ Cc(X) such that V ≺ g. For any f ≺ V one has f 6 g. It follows from
the definition of µ(V ) that

µ(K) 6 µ(V ) 6 λ(g) <∞.

(ii) Let V be an open subset such that µ(V ) < ∞. Given ε > 0, one can find
f ≺ V such that

µ(V ) < λ(f) + ε.

Since the support of f is a compact subset of V, one can find an open subset W
such that W is compact and

f ≺ W, W ⊆ V.

As a result, one has

µ(V ) < λ(f) + ε 6 µ(W ) + ε 6 µ(W ) + ε.

(iii) We first prove finite additivity on compact subsets, and then extend the result
to the general case by a standard ε

2n
-series argument.

Let K1, K2 be two disjoint compact subsets. Pick two disjoint open subsets
V1, V2 such that Ki ⊆ Vi (i = 1, 2). By the definition of µ(K1 ∪K2), there exists
an open set W such that W ⊇ K1 ∪K2 and

µ(W ) < µ(K1 ∪K2) + ε.
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For i = 1, 2, we pick gi ≺ W ∩ Vi such that

µ(W ∩ Vi)− ε < λ(gi).

It is clear that g1 + g2 ≺ W. Therefore,

µ(K1) + µ(K2)− 2ε 6 λ(g1) + λ(g2) = λ(g1 + g2) < µ(K1 ∪K2) + ε.

Since ε is arbitrary, one concludes that

µ(K1 ∪K2) > µ(K1) + µ(K2).

Now we treat the general case. Let {An : n > 1} be a disjoint sequence in A
and A , ∪∞n=1An. For each n > 1, one finds a compact subset Kn ⊆ An such that

µ(An) < µ(Kn) +
ε

2n
.

Note that the sequence {Kn : n > 1} is disjoint and one can apply the finite
additivity property just shown. It follows that

n∑
i=1

µ(Ai) 6
n∑
i=1

µ(Ki) + ε = µ(K1 ∪ · · · ∪Kn) + ε 6 µ(A) + ε.

By letting n→∞ and ε→ 0, one obtains that

µ(A) =
∞∑
n=1

µ(An).

If µ(A) <∞, given ε > 0 one can find an n such that

∞∑
i=n+1

µ(An) <
ε

2
.

For such n, one has

0 6 µ(A)− µ(K1 ∪ · · · ∪Kn) =
n∑
i=1

(µ(Ai)− µ(Ki)) +
∞∑

i=n+1

µ(Ai)

6
n∑
i=1

ε

2i
+
ε

2
< ε.
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Therefore, one concludes that A ∈ A.
(iv) We only check the property that

A1, A2 ∈ A =⇒ A1\A2 ∈ A.

It is obvious that µ(A1\A2) <∞. Given ε > 0, by the definition of µ and A, one
finds an open subset Vi ⊇ Ai as well as a compact subset Ki ⊆ Ai, such that

µ(Vi)−
ε

2
< µ(Ai) < µ(Ki) +

ε

2
, i = 1, 2.

In particular,
µ(Vi) < µ(Ki) + ε.

Observe that K , K1\V2 is compact subset contained in A1\A2. In addition, one
has

(A1\A2)\K ⊆ (A1\K1) ∪ (V2\A2).

Therefore,

0 6 µ(A1\A2)− µ(K) 6 µ(A1\K1) + µ(V2\A2)

6 µ(V1\K1) + µ(V2\K2)

= µ(V1)− µ(K1) + µ(V2)− µ(K2) (by additivity proven in (iii))
< 2ε.

We thus conclude that A1\A2 ∈ A.

Remark 1.5. By essentially the same argument as in Part (ii), one can show that

µ(V ) = sup{µ(K) : K compact, K ⊆ V }

for every open subset V . Namely, µ satisfies the inner regularity property.

Construction of the σ-algebra

We define

M ,
{
Y ⊆ X : Y ∩K ∈ A for all compact subset K

}
.

Note that the construction of M already encodes the Radon property, as seen
from the definition of A and Lemma 1.3 (see also Remark 1.5). In addition, one
has the following relation betweenM and A.
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Lemma 1.4. The ring A can be expressed as

A = {Y ∈M : µ(Y ) <∞}.

Proof. We only need to prove the “⊇” direction. Let Y ∈M and µ(Y ) <∞. one
can find an open subset V ⊇ Y such that µ(V ) <∞ (thus V ∈ A). Given ε > 0,
let K ⊆ V be a compact subset such that µ(V \K) < ε. Since Y ∩K ∈ A, there
exists a compact subset K ′ ⊆ Y ∩K such that

µ(Y ∩K) < µ(K ′) + ε.

It follows that

µ(Y ) = µ(Y ∩K) + µ(Y ∩Kc)

< µ(K ′) + ε+ µ(V \K)

< µ(K ′) + 2ε.

This shows that Y ∈ A.

The following lemma is the main result of this step.

Lemma 1.5. The classM is a σ-algebra containing B(X), and the restriction of
µ onM is a Radon measure.

Proof. Since A contains all compact subsets, one knows that X ∈ M. If A ∈ M
and K is compact, then

Ac ∩K = K\(A ∩K) ∈ A

since A is a ring. Therefore, Ac ∈ M. Finally, let {An : n > 1} ⊆ M and K be
compact so that Bn , An ∩ K ∈ A for each n. Note that ∪nBn ⊆ K and thus
µ(∪nBn) < ∞. By writing ∪nBn as a disjoint union and using Lemma 1.3 (iii),
(iv), one concludes that

∪nBn =
(
∪n An

)
∩K ∈ A.

As a result, one sees that ∪nAn ∈ M. Therefore,M is a σ-algebra. It is easy to
see thatM contains all closed subsets, and thus containing B(X).

To see that µ|M is a measure, let {An : n > 1} be a disjoint sequence inM.
There is nothing to prove if µ(An) = ∞ for some n. We may thus assume that
µ(An) <∞ for all n. But this implies An ∈ A for all n according to Lemma 1.4.
The countable additivity property thus follows from Lemma 1.3 (iii). The fact
that µ is a Radon measure is clear from the definition of µ and Remark 1.5.
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1.2.3 Step three: showing that the functional λ coincides with the
µ-integration

The last step for proving Theorem 1.1 is to show that

λ(f) =

∫
X

fdµ ∀f ∈ Cc(X). (1.6)

We first prepare two preliminary results.

Lemma 1.6. Let K be a compact subset and f ∈ Cc(X) be such that K ≺ f.
Then µ(K) 6 λ(f).

Proof. Let ε > 0. Pick an open subset W ⊇ K such that f > 1− ε on W . Then
pick g ≺ W such that

µ(W ) < λ(g) + ε.

Since g 6 f
1−ε , one sees that

µ(K) 6 µ(W ) < λ(g) + ε 6
λ(f)

1− ε
+ ε.

The result follows by sending ε→ 0.

The next result is known as the partition of unity, which is often useful in the
global analysis on manifolds/topological spaces.

Proposition 1.3. Let K be a compact subset and let {U1, · · · , Un} be a finite
open cover of K. Then there exists fi ≺ Ui for each 1 6 i 6 n, such that

K ≺ f1 + · · ·+ fn.

Proof. For each x ∈ K, there exists an open neighbourhood Wx of x such that
Wx ⊆ Ui for some i (depending on x). By compactness, one can coverK by finitely
many of the Wx’s, say Wx1 , · · · ,Wxm . For each 1 6 i 6 n, let Vi be the union of
those Wxr ’s such that W xr ⊆ Ui. It is clear that Vi ⊆ Ui and {V 1, · · · , V n} covers
K. Pick a function V i ≺ gi ≺ Ui. We define

f1 = g1, f2 = g2(1− g1), f3 = g3(1− g1)(1− g2), · · ·

and
fn = gn(1− g1) · · · (1− gn−1).
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Then each fi ≺ Ui and

f1 + · · ·+ fn = 1− (1− g1) · · · (1− gn).

Note that on K at least one of the gi’s equals one. Therefore,

f1 + · · ·+ fn = 1 on K.

It is clear that 0 6
∑n

i=1 fi 6 1. As a result, one has

K ≺ f1 + · · ·+ fn.

Now we can develop the main proof for this step.

Lemma 1.7. Let µ be the Radon measure constructed in Section 1.2.2. Then the
identity (1.6) holds.

Proof. By considering −f , it is enough to show that

λ(f) 6
∫
X

fdµ, ∀f ∈ Cc(X). (1.7)

Given such f, let K , suppf. We first construct a standard step-function approx-
imation of f . Suppose that f(K) ⊆ (a, b). Let ε > 0 be a given number. We
partition [a, b] into

a = a0 < a1 < · · · < an−1 < an = b

such that ai − ai−1 < ε for all i. Let Ai , K ∩ f−1([ai−1, ai)). Then the Ai’s are
disjoint and

K = ∪ni=1Ai.

Let

ϕ(x) ,
n∑
i=1

ai1Ai .

It follows that
0 6 ϕ− f 6 ε on X.

Next, let Λ , max{|ai| : 0 6 i 6 n}. For each i, we choose an open subset
Vi ⊇ Ai such that f(x) < ai for all x ∈ Vi and

µ(Vi) < µ(Ai) +
ε

nΛ
.
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This is possible by the continuity of f and the definition of µ(Ai). The open
subsets {V1, · · · , Vn} yield an open cover of K.

Now we use the partition of unity (cf. Proposition 1.3) to find hi ≺ Vi (1 6
i 6 n) such that

K ≺
n∑
i=1

hi.

Note that f =
∑n

i=1 fhi and fhi 6 aihi for each i. Therefore, one has

λ(f) =
n∑
i=1

λ(fhi) 6
n∑
i=1

aiλ(hi) =
n∑
i=1

(ai + Λ)λ(hi)− Λ · λ
( n∑
i=1

hi
)

6
n∑
i=1

(ai + Λ)µ(Vi)− Λµ(K) (by Lemma 1.6)

6
n∑
i=1

(ai + Λ)
(
µ(Ai) +

ε

nΛ

)
− Λµ(K)

6
n∑
i=1

aiµ(Ai) + Λµ(K) + 2ε− Λµ(K)

=

∫
X

ϕdµ+ 2ε

6
∫
X

fdµ+ εµ(K) + 2ε.

The inequality (1.7) thus follows by letting ε→ 0.

1.3 Indefinite integrals of Radon measures

We conclude this section by proving the following useful property of Radon mea-
sures. Let X be a locally compact, σ-compact Hausdorff space.

Proposition 1.4. Let µ be a Radon measure over X and let f be a non-negative
continuous function on X. Define the measure

ν(A) ,
∫
A

fdµ, A ∈ B(X).

Then ν is also a Radon measure.
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Proof. It is clear that ν is a measure on B(X). We now check the Radon property.

(i) Finiteness on compact subsets. This is clear since µ is finite on compact sets
and f is continuous (hence bounded on compact sets.)
(ii) Inner regularity. Let V be a given open subset. We only consider the case
when

∫
V
fdµ <∞ as the other case requires only minor modification. Since X is

σ-compact, one can find an sequence Wn of open subsets, such that

Wn ↑ X, W n compact for each n.

By the monotone convergence theorem, one has

lim
n→∞

∫
V ∩Wn

fdµ = ν(V ).

In particular, given ε > 0, there exists n such that

ν(V ) <

∫
V ∩Wn

fdµ+ ε.

Since µ is a Radon measure, one can find a compact subset K ⊆ V ∩Wn such
that

µ
(
V ∩Wn\K

)
<

ε

‖f‖∞;Wn

.

It follows that

ν(V ) <

∫
K

fdµ+

∫
V ∩Wn\K

fdµ+ ε < ν(K) + 2ε.

This proves the inner regularity of ν.
(iii) Outer regularity. Let A ∈ B(X). We assume that ν(A) < ∞ for otherwise
there is nothing to prove. Since X is σ-compact, one can write X as a disjoint
union

X = ∪∞n=1Xn,

where each Xn is contained in some open subset Wn with W n compact. It follows
that

ν(A) =
∞∑
n=1

ν(A ∩Xn) =
∞∑
n=1

∫
A∩Xn

fdµ.

Since µ is a Radon measure, for each n one finds an open subset Vn such that
A ∩Xn ⊆ Vn ⊆ Wn and

µ
(
Vn\(A ∩Xn)

)
<

ε

2n · ‖f‖∞;Wn

.
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As a result, one has

ν(A) =
∞∑
n=1

∫
Vn

fdµ−
∞∑
n=1

∫
Vn\(A∩Xn)

fdµ

>
∞∑
n=1

ν(Vn)−
∞∑
n=1

‖f‖∞;Wn
· µ
(
Vn\(A ∩Xn)

)
> ν

(
∪∞n=1 Vn

)
− ε.

Since ∪∞n=1Vn is an open subset containing A, the outer regularity property follows.
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2 Haar measures and Haar functionals on locally
compact Hausdorff groups

As an application of the RMK representation theorem, we construct invariant
measures on a locally compact Hausdorff group, so that one can integrate functions
on the group as well as on its factor spaces.

2.1 Some topological properties of locally compact Haus-
dorff groups

Let G be a given fixed locally compact Hausdorff group. Namely, G is a group, a
locally compact Hausdorff space, and the multiplication and inversion

(x, y) 7→ xy, x 7→ x−1

are both continuous operations. We collect a few basic definitions and topological
properties of G, some of which are particularly elegant due to the presence of the
group structure.

We use e to denote the identity of G. Given x ∈ G and A,B ⊆ G, we write

xA , {xa : a ∈ A}, AB , {ab : a ∈ A, b ∈ B}.

A continuous function f on G is said to be uniformly continuous, if for any ε > 0,
there exists an open neighbourhood V of e such that

x−1y ∈ V =⇒ |f(y)− f(x)| < ε.

By making use the group multiplication, it is easy to describe the closure of a
subset.

Lemma 2.1. Let A ⊆ G. Then

Ā =
⋂
V

AV

where the intersection is taken over all open neighbourhoods of e.
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Proof. Let x ∈ Ā. Given any open neighbourhood V of e, one knows that xV −1

is a neighbourhood of x. Therefore, xV −1 ∩ A 6= ∅. In other words, xv−1 = y for
some v ∈ V and y ∈ A. It follows that

x = yv ∈ AV.

Since V is arbitrary, one co that x ∈ ∩VAV . Conversely, let x ∈ ∩VAV. Then for
any open neighbourhood V of e, one has xV −1∩A 6= ∅. Since xV −1 is an arbitrary
neighbourhood of x, one co that x ∈ Ā.

Lemma 2.2. Let H be a subgroup of G. Then H̄ is also a subgroup of G.

Proof. (i) H̄ is closed under multiplication. Let h ∈ H. Then

hH ⊆ H ⊆ H̄ =⇒ H ⊆ h−1H̄ =⇒ H̄ ⊆ h−1H̄ =⇒ hH̄ ⊆ H̄.

This shows that HH̄ ⊆ H̄. Next, let x ∈ H̄. The previous fact gives

Hx ⊆ H̄ =⇒ H ⊆ H̄x−1 =⇒ H̄ ⊆ H̄x−1 =⇒ H̄x ⊆ H̄.

This implies that H̄H̄ ⊆ H̄.
(ii) H̄ is closed under inversion. one has

H−1 = H ⊆ H̄ =⇒ H ⊆ H̄−1 =⇒ H̄ ⊆ H̄−1 =⇒ H̄−1 ⊆ H̄.

Next, we discuss some topological properties on factor spaces of G. Let H be
a given subgroup of G. We define G/H to be the collection of left H-cosets:

G/H , {xH : x ∈ G}.

Let π : G→ G/H be the canonical projection. The space G/H is equipped with
the quotient topology, namely W is open in G/H if and only if π−1(W ) is open
in G. The following fact is quite useful in general.

Lemma 2.3. (i) A subset W ⊆ G/H is open if and only if W = π(V ) for some
open subset V ⊆ G.
(ii) A subset L ⊆ G/H is compact if and only if L = π(K) for some compact
subset K ⊆ G.
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Proof. (i) Let W ⊆ G/H be open. Then π−1(W ) is open in G and one also has
W = π(π−1(W )). Conversely, suppose that W = π(V ) with some open V ⊆ G.
Then

π−1(W ) = π−1(πV ) = V H =
⋃
h∈H

V h,

which is an open subset of G. Therefore, W is open in G/H.
(ii) Sufficiency is obvious. For the necessity, let L be a compact subset of G/H.
Since G is locally compact, there exists a compact neighbourhood V of e (V
open, V̄ compact). From Part (i), one knows that π(xV ) is open in G/H for each
x ∈ G. Note that {π(xV ) : x ∈ G} covers L. By compactness, one can find a
finite sub-cover, say

L ⊆ π(x1V ) ∪ · · · ∪ π(xnV ).

We define
K , π−1(L) ∩

(
x1V̄ ∪ · · · ∪ xnV̄

)
.

Then K is a compact subset of G, and it is routine to check that π(K) = L.

Note that G is a disjoint union of the left H-cosets xH. If H is an open
subgroup, then xH is an open subset of G for each x ∈ G. As a result,

Hc =
⋃
x/∈H

xH

is a disjoint union of open subsets and is thus open. Equivalently, H is closed.
This yields an interesting fact that every open subgroup of G is also closed. In
particular, if G is connected, the only open subgroup of G is the group G itself.

On the other hand, closed subgroups are more important objects to consider.

Lemma 2.4. A subgroup H is closed if and only if the factor space G/H is
Hausdorff.

Proof. Suppose that H is closed. Let xH 6= yH (equivalently, y−1x /∈ H). Since
H is closed, one can find an open neighbourhood V of e, such that V y−1xV ⊆ Hc

(consider the function ϕ : G × G → G defined by ϕ(z, w) , zy−1xw). We claim
that

π(xV ) ∩ π(yV ) = ∅. (2.1)

Indeed, if it were not true, by definition one can find v1, v2 ∈ V and h1, h2 ∈ H,
such that xv1h1 = yv2h2. Equivalently, one has

v−1
2 y−1xv1 = h2h

−1
1 ∈ H,
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which is a contradiction. Therefore, (2.1) holds and thus G/H is Hausdorff.
Conversely, suppose that G/H is Hausdorff. Let x /∈ H. Then as elements in

G/H one has H 6= xH. By assumption, one can pick two open neighbourhoods
W1 3 H and W2 3 xH such that W1∩W2 = ∅. It follows that π−1(W2) is an open
neighbourhood of x and π−1(W2) ⊆ Hc. Therefore, Hc is open.

Lemma 2.4 gives a rather simple way of constructing non-Hausdorff spaces:
one can take non-closed subgroupsH and consider the corresponding factor spaces
G/H. For instance, let G = S1 and let H be the subgroup generated by

√
2. Then

H is not closed and thus G/H is not Hausdorff.
We conclude with one more observation which will be used in the sequel.

Lemma 2.5. Let H be a closed subgroup of G. The factor space G/H is locally
compact and Hausdorff. In addition, if G is σ-compact, then G/H is also σ-
compact.

Proof. From Lemma 2.4 one knows that G/H is Hausdorff. To see local compact-
ness, let xH ∈ G/H be given. Since G is locally compact, one can find a compact
neighbourhood V of x (V open, V̄ compact). It follows that xH ∈ π(V ) ⊆ π(V̄ ).
In other words, xH has a compact neighbourhood, and thus G/H is locally com-
pact. If G is σ-compact, then G = ∪nKn where Kn is an increasing sequence of
compact subsets. It follows that G/H = ∪nπ(Kn). In particular, G/H is also
σ-compact.

2.2 Haar measures and Haar functionals

To integrate functions on G, one needs to have a suitable notion of measures.
Since G is a locally compact Hausdorff group, a natural notion is Radon measures
with certain G-invariant property.

Definition 2.1. A (left) Haar measure on G is a non-trivial Radon measure µ
which is left invariant, in the sense that

µ(xA) = µ(A) ∀x ∈ G, A ∈ B(G).

If µ is a Haar measure, then all open subsets have positive µ-measures. Indeed,
since µ is non-trivial, there exists A ∈ B(G) such that µ(A) > 0. By outer and
inner regularity, one can find a compact subset K such that µ(K) > 0. Now
suppose that U is an open subset with zero µ-measure. By left translation and
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compactness, one can cover K by x1U, · · · , xnU with x1, · · · , xn ∈ G. Since µ is
left-invariant, one has

µ(K) 6
n∑
i=1

µ(xiU) = nµ(U) = 0,

which is a contradiction. Therefore, all open subsets have positive µ-measure.
In view of the connection between Radon measures and positive linear func-

tionals, one also has the following definition.

Definition 2.2. A (left) Haar functional (also known as a (left) Haar integral)
is a non-zero, positive linear function λ : Cc(G)→ C which is left invariant, in the
sense that

λ(lxf) = λ(f) ∀x ∈ G, f ∈ Cc(G),

where (lxf)(y) , f(x−1y).

By applying the RMK representation theorem (cf. Theorem 1.1) plus a little
extra effort, one can obtain the following result.

Theorem 2.1. There is a one-to-one correspondence between Haar measures and
Haar functionals given by

µ 7→ λµ : λµ(f) ,
∫
G

fdµ, f ∈ Cc(G).

Proof. The proof boils down to the following points.

(i) If µ is a Haar measure, then λµ is a Haar functional. Indeed, by approximating
f ∈ Cc(G) by step functions, the left invariance of µ gives the left invariance of
λµ: ∫

G

f(ax)µ(dx) =

∫
G

f(x)µ(dx), ∀a ∈ G.

(ii) Let λ be a Haar functional. According to the RMK representation theorem,
there is a unique Radon measure µ such that λ = λµ. According to left invariance
of λ and the property (1.4), one sees that µ is left invariant on open subsets. It
follows from outer regularity that µ is left invariant on B(G).
(iii) If µ, ν are two Haar measures giving the same integral λµ = λν , then µ = ν.
This is just the uniqueness part of the RMK representation theorem.

We are now facing two natural questions: Do Haar measures on G exist, and
if yes how many are there? The answer is contained in the following main result.
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Theorem 2.2. Haar measures on G exist, and they are unique up to the multi-
plication by positive scalars.

We prove uniqueness and existence in the next two sections respectively. The
approach we take relies on the functional viewpoint of Theorem 2.1.

2.3 The uniqueness of Haar measures

In order to prove the uniqueness part, we first consider the case when G is σ-
compact. The main advantage of this extra assumption is that any Radon measure
on G is σ-finite, and one can apply Fubini’s theorem when evaluating double
integrals.

Proof of the uniqueness part when G is σ-compact. Suppose that µ and ν are two
Haar measures on G. Given a non-zero function f ∈ Cc(G), we define

ρ(f) ,

∫
G
fdµ∫

G
fdν

.

Our goal is to show that ρ(f) is a positive constant which is independent of f .
This implies from Theorem 2.1 that µ and ν differ by a positive multiplicative
scalar.

To this end, let W be a compact neighbourhood of e, and pick h ≺ W . By
considering h(x)h(x−1) one may assume that h(x) = h(x−1), and by normalisation
one may also assume that ∫

G

h(x)ν(dx) = 1.

It follows that ( ∫
G

hdµ
)
·
( ∫

G

fdν
)
−
( ∫

G

hdν
)
·
( ∫

G

fdµ
)

=

∫
G×G

(
h(x)f(y)− h(y)f(x)

)
µ(dx)ν(dy)

= I − J,
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where

I ,
∫
G×G

h(x)f(y)µ(dx)ν(dy) =

∫
G×G

h(y−1x)f(y)µ(dx)ν(dy)

=

∫
G×G

h(x−1y)f(y)µ(dx)ν(dy)
Fubini

=

∫
G

µ(dx)

∫
G

h(x−1y)f(y)ν(dy)

=

∫
G×G

h(y)f(xy)µ(dx)ν(dy) (x−1y 7→ y),

and

J ,
∫
G×G

h(y)f(x)µ(dx)ν(dy) =

∫
G×G

h(y)f(yx)µ(dx)ν(dy) (x 7→ yx).

Therefore, one arrives at( ∫
G

hdµ
)
·
( ∫

G

fdν
)
−
( ∫

G

hdν
)
·
( ∫

G

fdµ
)

=

∫
G×G

h(y)
(
f(xy)− f(yx)

)
µ(dx)ν(dy).

Since f ∈ Cc(G), given ε > 0, when the neighbourhoodW is small enough, the
right hand side can be made smaller than ε ·Cf where Cf is a constant depending
on µ(suppf) (the choice of h depends on W ). As a result, one obtains that∣∣ ∫

G

hdµ− ρ(f)
∣∣ 6 εCf∫

G
fdν

.

In particular,

ρ(f) = lim
W→{e}

∫
G

hdµ.

Since the limit does not depend on f , one co that ρ(f) does not depend on f. The
fact that ρ(f) > 0 is obvious by taking f > 0.

To get rid of the σ-compactness assumption, we rely on the following lemma.

Lemma 2.6. There exists an open subgroup H of G which is σ-compact.

Proof. Let K be a compact neighbourhood of e. By considering KK−1 one may
assume that K is symmetric. Define H , ∪∞n=1K

n. It is clear that H is a subgroup
of G and H is σ-compact. To see that it is open, let x ∈ H. Then x ∈ Kn for
some n. It follows that xK ⊆ Kn+1 ⊆ H. Therefore, H is open.
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Now we are able to prove the uniqueness part for the general case.

Proof of the uniqueness part without σ-compactness. Let H be a σ-compact open
subgroup of G given by Lemma 2.6. Since the restrictions of µ and ν on H are
Haar measures on H, one has essentially proven that, there exists a constant c > 0
such that ∫

G

fdν = c

∫
G

fdµ ∀f ∈ Cc(H).

Now write G as the disjoint union of left cosets xH. Let f ∈ Cc(G) and K ,
suppf . By compactness, one can cover K by x1H, · · · , xnH for some x1, · · · , xn.
Let {h1, · · · , hn} be a partition of unity subordinate to this open cover (cf. Propo-
sition 1.3), i.e. hi ≺ xiH for each i and

K ≺ h1 + · · ·+ hn.

Then one has lx−1
i

(fhi) ∈ Cc(H) for each i. Therefore,∫
G

fdν =
n∑
i=1

∫
G

fhidν =
n∑
i=1

∫
G

lx−1
i

(fhi)dν (by left invariance)

= c ·
n∑
i=1

∫
G

lx−1
i

(fhi)dν = c ·
∫
G

fdµ.

2.4 The existence of Haar measures

We prove the existence of a Haar measure by constructing a Haar functional (cf.
Theorem 2.1), i.e. a positive linear functional λ : Cc(G)→ R which is non-zero and
left-invariant. For this purpose, the main idea is to first construct a family of left-
invariant functionals that are “almost additive”, and then show that the “limiting
object” obtained from this family is indeed additive. Here the perspective of
taking limit is abstract but quite elegant: one thinks of this family of functionals
as a collection of points in some compact topological space, and the existence of
a “limit” for this collection will be a simple consequence of compactness. The
approach we adopt here was due to H. Cartan [2].
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The essential structure

Let L+ denote the space of functions f ∈ Cc(G) such that f > 0. A major effort
of the proof is to construct a family of functionals

λg : L+ → [0,∞)

indexed by non-trivial elements g ∈ L+, such that the following properties hold.

(i) λg is sub-additive:

λg(f1 + f2) 6 λg(f1) + λg(f2), λg(cf1) = cλg(f1) (2.2)

for all f1, f2 ∈ L+ and c > 0;
(ii) λg is “almost additive”: given f1, f2 ∈ L+ and ε > 0, there exists a neighbour-
hood V of e, such that

λg(f1 + f2) > λg(f1) + λg(f2)− ε (2.3)

for all g whose support is contained in V ;
(iii) λg is left-invariant, i.e.

λg(lxf) = λg(f) ∀f ∈ L+ and x ∈ G;

(iv) For each f ∈ L+, there exist non-negative numbers af 6 bf (depending on f)
such that af > 0 if f 6= 0, and

af 6 λg(f) 6 bf ∀g ∈ L+, g 6= 0.

Presuming the existence of such a family {λg}, let us proceed to construct a
desired Haar functional via certain topological limiting procedure. The precise
construction of these λg’s will be given in the next subsection.

Proof of the existence of Haar functionals. Let {λg} be a family of functionals
satisfying the above Properties (i) – (iv). We consider the product space

I ,
∏
f∈L+

If , If , [af , bf ]

equipped with the usual product topology. According to Tychonoff’s theorem
(cf. Theorem B.1), I is a compact topological space. By Property (iv), for each
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g ∈ L+\{0}, the functional λg can be equivalently viewed as a point in I. For
each open neignbourhood V of e, we define SV to be the closure of the point set

{λg : suppg ⊆ V }

in I. Since

{λg : suppg ⊆ V1 ∩ · · · ∩ Vn} ⊆ {λg : suppg ⊆ V1} ∩ · · · ∩ {λg : suppg ⊆ Vn},

it is clear that the family of compact subsets SV ⊆ I has the finite intersection
property. Therefore, the intersection of all such SV ’s is non-empty, say having a
common element λ. Since λ ∈ I, it defines a functional

λ : L+ → R, f 7→ πf (λ) ∈ If

in the obvious way.
We claim that λ is additive, left-invariant and non-zero. To see its additivity,

let f1, f2 ∈ L+ and f3 , f 1 + f2. Given ε > 0, let V be the neighbourhood
of e such that Property (ii) holds. Since λ ∈ SV , by considering the continuous
projection

π(3) : I → If1 × If2 × If3 ,
one has

π(3)(λ) ∈
3∏
i=1

{λg(fi) : suppg ⊆ V }.

As a result, there exists g such that suppg ⊆ V and∣∣λ(fi)− λg(fi)
∣∣ < ε, i = 1, 2, 3.

It follows from (2.2) and (2.3) that

λ(f1) + λ(f2)− 4ε 6 λ(f1 + f2) 6 λ(f1) + λ(f2) + 3ε.

Since ε is arbitrary, the additivity of λ thus follows. In a similar way, the left-
invariance of λ is the consequence of the left-invariance of the λg’s. Finally, since
λ(f) > af > 0 whenever f 6= 0, one sees that λ is non-zero.

To conclude the proof, it remains to define the actual functional λ : Cc(G)→ R
by

Λ(f) , λ(f1)− λ(f2),

where f = f1 − f2 with f1, f2 ∈ L+. The additivity of λ on L+ shows that Λ is a
well defined linear functional. The fact that Λ is a Haar functional is now obvious.
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The construction of λg

We now proceed to give an explicit construction of the family {λg : L+\{0}}. To
this end, we first make the following observation.

Lemma 2.7. Let f, g ∈ L+ and g 6= 0. Then there exist positive numbers ci > 0
as well as si ∈ G (1 6 i 6 n), such that

f(x) 6
n∑
i=1

cig(six). (2.4)

Proof. Let V be an open subset of G such that g > m > 0 on V . SinceK , suppf
is compact, one can cover K by s1V, · · · , snV with some n > 1 and si ∈ G
(1 6 i 6 n). Let

ci ,
sup f

m
, i = 1, 2, · · · , n.

Then the inequality (2.4) holds for such choices of the ci, si’s.

Given f, g ∈ L+, we define (f : g) to be the infimum of all the sums
∑n

i=1 ci
for all choices of {ci, si} satisfying (2.4). If g = 0, we take the convention that
(f : g) , ∞. When g 6= 0, one has (0 : g) = 0 and from Lemma 2.7 one also
knows that (f : g) <∞.

Remark 2.1. From the proof of Lemma 2.7, one actually has (when g 6= 0)

(f : g) 6
n sup f

m

where n,m are the numbers introduced in that proof. This inequality will be
useful later on.

The basic properties of (f : g) are summarised in the following lemma. The
proof is almost immediate from the definition and is thus left as an exercise.

Lemma 2.8. The symbol (f : g) satisfies the following properties:

(i) Left-invariance:
(lxf : g) = (f : g) ∀x ∈ G;

(ii) Sub-additivity:
(f1 + f2 : g) 6 (f1 : g) + (f2 : g);

(iii) Scaling:
(cf : g) = c(f : g) ∀c > 0;
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(iv) Monotonicity:
f1 6 f2 =⇒ (f1 : g) 6 (f2 : g);

(v) For any f, g, h ∈ L+, one has

(f : g) 6 (f : h)(h : g); (2.5)

(vi) For any f, g ∈ L+ not both being zero, one has

(f : g) >
sup f

sup g
.

Now let h0 ∈ L+ be a non-zero function that is fixed throughout the rest.
Given g ∈ L+\{0}, we define

λg(f) ,
(f : g)

(h0 : g)
, f ∈ L+.

It remains to show that the family {λg : g ∈ L+\{0}} satisfies the Properties (i) –
(iv) in the last subsection. Properties (i) and (iii) are plain. Property (iv) follows
from (2.5):

af :=
1

(h0 : f)
6 λg(f) 6 (f : h0) =: bf . (2.6)

It is clear that af > 0 when f 6= 0. The justification of Property (iii) is contained
in the following lemma, after which the proof of the existence of Haar measures
will be complete.

Lemma 2.9. Let f1, f2 ∈ L+ and ε > 0. Then there exists a neighbourhood V of
e, such that

λg(f1 + f2) > λg(f1) + λg(f2)− ε

for any g with suppg ⊆ V .

Proof. Let h be such that suppf1 ∪ suppf2 ≺ h (cf. (1.3)). Let δ > 0 which will
be chosen later on (depending on f1, f2 and ε). We define

f = f1 + f2 + δh,

and let hi , fi/f (i = 1, 2). Due to the presence of h, hi is a well defined function
in L+. In particular, by uniform continuity there exists an open neighbourhood
V of e such that

|hi(y)− hi(x)| < δ (i = 1, 2)
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whenever y ∈ xV. Let g be an arbitrary non-zero function in L+ such that suppg ⊆
V. Suppose that

f(x) 6
n∑
j=1

cjg(sjx) ∀x ∈ G (2.7)

with some {cj, sj}. If g(sjx) 6= 0, then sjx ∈ V or equivalently x ∈ s−1
j V . It

follows that

fi(x) = f(x)hi(x) 6
n∑
j=1

cjg(sjx)hi(x)

6
n∑
j=1

cjg(sjx)
(
hi(s

−1
j ) + δ

)
for i = 1, 2. By definition one has

(fi : g) 6
n∑
j=1

cj
(
hi(s

−1
j ) + δ

)
, i = 1, 2.

Since h1 + h2 6 1, one obtains

(f1 : g) + (f2 : g) 6 (1 + 2δ)
n∑
j=1

cj,

and by taking infimum of the sums
∑n

j=1 cj satisfying (2.7), one has

(f1 : g) + (f2 : g)

6 (1 + 2δ)(f : g)

6 (1 + 2δ)(f1 + f2 : g) + (1 + 2δ)δ(h : g).

Dividing this by (h0 : g), one arrives at

λg(f1) + λg(f2) 6 λg(f1 + f2) + 2δλg(f1 + f2) + (1 + 2δ)δλg(h).

The next observation is that (cf. (2.6))

λg(f1 + f2) 6 (f1 + f2 : h0), λg(h) 6 (h : h0),

both of which are further bounded by a constant depending only on f1, f2 and h0

(cf. Remark 2.1), say M = Mf1,f2,h0 . The result thus follows by choosing δ such
that (

2δ + (1 + 2δ)δ
)
M < ε.
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2.5 The modular function

It is conventional to use left invariance for the definition of Haar measures, which
is more consistent with the study of group actions. One can equivalently use right
invariance to formulate Haar measures and Haar integrals. However, in general
one cannot expect that Haar measures are both left and right invariant. A way
of capturing the difference is through the so-called modular function.

To define the modular function, let µ be a given (left invariant) Haar measure.
First note that, for any a ∈ G, the functional λa : Cc(G)→ C defined by

λa(f) ,
∫
G

f(xa−1)µ(dx), f ∈ Cc(G)

is a non-trivial, left invariant, positive linear functional (i.e. a Haar functional).
According to Theorem 2.2, there exists a unique real number ∆(a) > 0 such that

λa(f) = ∆(a)

∫
G

f(x)µ(dx) ∀f ∈ Cc(G).

This defines a function ∆ : G→ R∗ , (0,∞). More explicitly, one has

∆(a) =

∫
G
f(xa−1)µ(dx)∫
G
f(x)µ(dx)

, a ∈ G, (2.8)

where f is any given function in Cc(G) with
∫
G
fdµ 6= 0. Since Haar measures are

unique up to a multiplicative constant, the function ∆ does not depend on the
choice of the Haar measure µ.

Definition 2.3. The function ∆ : G→ R∗ is called the modular function of G.

Proposition 2.1. The modular function ∆ is a continuous homomorphism.

Proof. By the definition of ∆, for any a, b ∈ G one has

∆(ab)

∫
G

f(x)µ(dx) =

∫
G

f(xb−1a−1)µ(dx) =

∫
G

(raf)(xb−1)µ(dx)

= ∆(b)

∫
G

raf(x)µ(dx) = ∆(b)∆(a)

∫
G

f(x)µ(dx).

Therefore, ∆ is a homomorphism. The continuity of ∆ follows from the formula
(2.8), as the integral in the numerator is continuous in a.
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The following property gives a relation between left and right Haar measures
through the modular function.

Proposition 2.2. Let µ be a left Haar measure on G. Then the following state-
ments hold true.

(i) For any f ∈ Cc(G), one has∫
G

f(x−1)∆(x−1)µ(dx) =

∫
G

f(x)µ(dx).

(ii) If G is also σ-compact, then ∆(x−1)µ(dx) is a right Haar measure.

Proof. (i) Define the functional

λ∆(f) ,
∫
G

f(x−1)∆(x−1)µ(dx), f ∈ Cc(G).

It is clear that λ∆ is a non-trivial, positive linear functional. We claim that λ∆ is
left invariant. Indeed, for a ∈ G, one has

λ∆(laf) =

∫
G

(laf)(x−1)∆(x−1)µ(dx) =

∫
G

f((xa)−1)∆(x−1)µ(dx)

= ∆(a)

∫
G

f((xa)−1)∆((xa)−1)µ(dx)

= ∆(a)∆(a−1)

∫
G

f(x−1)∆(x−1)µ(dx)

= λ∆(f),

where to reach the second last identity one has used (2.8) for the function g(x) ,
f(x−1)∆(x−1). Therefore, λ∆ is a left Haar functional. According to Theorem
2.2, there exists C > 0 such that

λ∆(f) = C

∫
G

f(x)µ(dx) ∀f ∈ Cc(G).

We now show that C = 1. To this end, given ε > 0, pick a compact neighbour-
hood W of e such that

|∆(x−1)− 1| < ε ∀x ∈ W,

and pick f ≺ W such that

f(x) = f(x−1),

∫
G

f(x)µ(dx) = 1.
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It follows that

C =

∫
G

f(x−1)∆(x−1)µ(dx)

=

∫
G

f(x)∆(x−1)µ(dx)

= 1 +

∫
W

f(x)
(
∆(x−1)− 1

)
µ(dx).

Therefore,

|C − 1| 6 ε ·
∫
W

f(x)µ(dx) = ε.

Since ε is arbitrary, C has to be equal to one. As a result, one co that

λ∆(f) =

∫
G

f(x)µ(dx).

(ii) Since G is σ-compact, from Proposition 1.4 one knows that ∆(x−1)µ(dx) is a
Radon measure. Now consider the functional

Λ(f) ,
∫
G

f(x)∆(x−1)µ(dx), f ∈ Cc(G).

Then Λ is a non-trivial, positive linear functional. We claim that Λ is right
invariant. Indeed, for any a ∈ G, according to Part (i) one has

Λ(raf) =

∫
G

f(xa−1)∆(x−1)µ(dx) =

∫
G

f̂(ax−1)∆(x−1)µ(dx)

=

∫
G

f̂(ax)µ(dx) =

∫
G

f̂(x)µ(dx) =

∫
G

f̂(x−1)∆(x−1)µ(dx)

=

∫
G

f(x)∆(x−1)µ(dx) = Λ(f).

According to Theorem (2.2) (more precisely, the right invariant version of the
theorem), one co that ∆(x−1)µ(dx) is a right Haar measure.

Proposition 2.2 suggests that left and right Haar measures can be different in
general. There is a situation where left and right Haar measures are identical.

Proposition 2.3. ∆ ≡ 1 if and only if all left Haar measures on G are right
invariant.
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Proof. Let µ be a left Haar measure. According to (2.8), one has

∆ ≡ 1 ⇐⇒
∫
G

f(xa)µ(dx) =

∫
G

f(x)µ(dx) ∀a and f ⇐⇒ µ is right invariant.

Definition 2.4. A locally compact Hausdorff group G is called unimodular if
∆ ≡ 1, namely, if all left Haar measures are right invariant.

It is trivial that abelian groups are unimodular. Another situation of unimod-
ular groups is the following.

Proposition 2.4. All compact Hausdorff groups are unimodular.

Proof. Let G be a compact Hausdorff group. The essential observation is that
any continuous homomorphism ψ : G→ R∗ has to be trivial. For if not, say

sup
x∈G

ψ(x) = r > 1.

Since G is compact, one finds x0 ∈ G such that ψ(x0) = r. Then ψ(x2
0) = r2 > r

which is a contradiction. Therefore, as a particular continuous homomorphism
the modular function ∆ is trivial.

There are non-compact unimodular groups, as seen from the following exam-
ple.

Example 2.1. Let G = GL(n;R). One views G as an open subset of Rn2 in the
obvious way, and let dx denote the Lebesgue measure. Then µL(dx) = dx

|detx|n is a
left Haar measure on G. Indeed, for any a ∈ G one has∫

G

f(ax)
dx

| detx|n
=

∫
G

f(y)
| det a−1|ndy
| det a−1y|n

=

∫
G

f(y)
dy

| det y|n
.

The measure µL is also right invariance by essentially the same line of calculation.
In particular, d×x , dx

|x| is a Haar measure on R× , R\{0}.

Below is an example of a group that is not unimodular.

Example 2.2. Let G be the group of affine transformations z 7→ x1z + x2 where
x1 ∈ R× and x2 ∈ R. Explicitly, one has

G =

{
x =

(
x1 x2

0 1

)
: x1 ∈ R×, x2 ∈ R

}
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equipped with the usual matrix multiplication.
It is natural to look for left Haar measures of the form

µL = ρ(x1, x2)dx1dx2,

where dx1, dx2 are the Lebesgue measures on R×,R respectively, and ρ(x1, x2) is
some function to be determined. Given a, y ∈ G, note that

a−1y =

( y1
a1

y2
a1
− a2

a1

0 1

)
.

By a change of variables and the left invariance, for any a =
( a1 a2

0 1

)
∈ G and

f ∈ Cc(G) one has∫
G

f(ax)ρ(x)dx1dx2 =

∫
G

f(y)ρ(a−1y)
dy1dy2

a2
1

=

∫
G

f(y)ρ(y)dy1dy2.

This suggests that
1

a2
1

ρ(
y1

a1

,
y2

a1

− a2

a1

) = ρ(y1, y2).

As a result, ρ(y1, y2) should not depend on y2, and its dependence on y1 is clear
from the above scaling property. More explicitly, one has ρ(y1, y2) = 1

y21
. It is now

readily checked that

µL =
dy1dy2

y2
1

=
1

|y1|
· d×y1dy2

is a left Haar measure on G, where d×y1 ,
dy1
|y1| is the canonical left Haar measure

on R×.
Next we compute the modular function of G. By using (2.8), one has

∆(a) =

∫
G
f(xa−1)µL(dx)∫
G
f(x)µL(dx)

=

∫
G
f(y)ρ(ya) · |a1|dy1dy2∫

G
f(x)µL(dx)

=
1

|a1|
·
∫
G
f(y)ρ(y)dy1dy2∫
G
f(x)µL(dx)

=
1

|a1|
.

It follows that a right Haar measure on G is given by

∆(x−1)µL(dx) = |x1| ·
dx1dx2

x2
1

= d×x1dx2.

The left and right Haar measures on G are apparently different in this case.
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2.6 Integration on factor spaces

Let G be a locally compact Hausdorff group and let H be a closed subgroup of
G. From the viewpoint of group actions as well as for geometric reasons, it is
important to consider integration on the factor space G/H.

Let µH be a given fixed left Haar measure on H. For f ∈ Cc(G), consider the
function

F (u) ,
∫
H

f(uy)µH(dy), u ∈ G.

It is obvious that F is continuous. F is constant on left H-cosets, since

u2 = u1h =⇒ F (u2) =

∫
H

f(u1hy)µH(dy) =

∫
H

f(u1z)µH(dz) = F (u1).

As a result, there is a well defined function fH on G/H such that F = fH ◦ π
where π : G→ G/H is the canonical projection. By the definition of the quotient
topology and the continuity of F, one sees that fH is continuous. In addition, if
K , suppf, it is not hard to see that fH = 0 on π(Kc). Therefore, fH ∈ Cc(G/H).

Proposition 2.5. The map Cc(G) 3 f 7→ fH ∈ Cc(G/H) a linear epimorphism.

Proof. We only need to check surjectivity. Let f ′ ∈ Cc(G/H) with support K ′ ⊆
G/H. According to Lemma 2.3 (ii), there is a compact subset K ⊆ G such that
π(K) = K ′. Pick g ∈ Cc(G) such that g > 0 on G and g > 0 on K. By the
definition of gH one has gH > 0 on K ′. Define

f(x) , g(x) · f
′(π(x))

gH(π(x))
, x ∈ G.

Then f ∈ Cc(G) as g does. The surjectivity property follows from

fH(π(x)) =

∫
H

f(xy)µH(dy) =

∫
H

g(xy) · f
′(π(xy))

gH(π(xy))
µH(dy) = f ′(π(x)).

From now on, we further assume that G is σ-compact for the convenience
of using Fubini’s theorem. Let K be a closed subgroup of G. It is often the
case that K is compact but we do not need this assumption here. From Lemma
2.5, one knows that G/K is locally compact, Hausdorff and σ-compact. Let ∆G

(respectively, ∆K) denote the modular function of G (respectively, K). Let µG
(respectively, µK) be a given fixed left Haar measure on G (respectively, on K).
The following result gives the construction of left G-invariant measures on G/K.
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Theorem 2.3. Suppose that ∆G|K = ∆K . Then there exists a unique Radon
measure µG/K on G/K, such that∫

G/K

fKdµG/K =

∫
G

fdµG, ∀f ∈ Cc(G).

In addition, µG/K is left G-invariant.

Proof. Uniqueness is a consequence of the uniqueness part for the general RMK
representation theorem. One can use the same theorem to prove existence, by
considering the positive linear functional

Λ(ϕ) ,
∫
G

fdµG

on Cc(G/K), where f ∈ Cc(G) is such that fK = ϕ whose existence is guaranteed
by Proposition 2.5. The only non-trivial part is to show that Λ is well defined.
This is equivalent to the following statement:

fK = 0 =⇒
∫
G

fdµG = 0.

To this end, given f ∈ Cc(G), let ψ ∈ Cc(G/K) be such that ψ = 1 on π(suppf)
and choose g ∈ Cc(G) with gK = ψ. Then one has

0 =

∫
G

g(x)fK(π(x))µG(dx) =

∫
G

g(x)
( ∫

K

f(xk)µK(dk)
)
µG(dx)

=

∫
K

µK(dk)

∫
G

g(x)f(xk)µG(dx)

=

∫
K

µK(dk) ·∆G(k−1)

∫
G

g(xk−1)f(x)µG(dx)

=

∫
G

f(x)µG(dx)

∫
K

∆K(k−1)g(xk−1)µK(dk) (by assumption)

=

∫
G

f(x)µG(dx)

∫
K

g(xk)µK(dk) =

∫
G

f(x)gK(π(x))µG(dx)

=

∫
G

f(x)ψ(π(x))µG(dx) =

∫
G

f(x)µG(dx).

This shows that Λ is well defined. The RMK theorem then gives the existence of
µG/K . To see its left invariance, observe that lafK = (laf)K for any f ∈ Cc(G).
Therefore,∫
G/K

lafKdµG/K =

∫
G/K

(laf)KdµG/K =

∫
G

lafdµG =

∫
G

fdµG =

∫
G/K

fKdµG/K .
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Remark 2.2. An important case of Theorem 2.3 is when G and K are both uni-
modular.

There is a situation when G/K admits a further decomposition that is of par-
ticular importance. Let us assume that both G and K are unimodular. Suppose
that there is another closed subgroup P of G, such that the map

P ×K → G, (p, k) 7→ pk (2.9)

is a topological homeomorphism. Then P is homeomorphic to G/K via p 7→ pK.
In addition, the measure µP on P induced by µG/K (cf. Theorem 2.3) is a left
Haar measure on P . According to the same theorem,∫

G

f(x)µG(dx) =

∫
P

( ∫
K

f(pk)µK(dk)
)
µP (dp).

Symbolically, one can write dµG = dµPdµK under the identification (2.9).
Now suppose further that there are unimodular, closed subgroups A,N of P

such that A normalises N (i.e. ana−1 ∈ N for all a ∈ A and n ∈ N) and the map

A×N → P, (a, n) 7→ an

is a topological homeomorphism. Then G admits a unique decomposition G =
ANK. Let da, dn, dk be given left Haar measures on A,N,K respectively.

Proposition 2.6. The measure dadn induced by the map

A×N → P, (a, n) 7→ an

is a left Haar measure on P. Similarly, the measure dadndk induced on G by the
map

A×N ×K → G, (a, n, k) 7→ ank

is a left Haar measure on G.

Proof. We first show that dadn is a left Haar measure on P. The A-invariance
follows from∫

P

f(a−1
1 an)dadn =

∫
N

dn

∫
A

f(a−1
1 an)da =

∫
N

dn

∫
A

f(an)da =

∫
P

f(an)dadn,
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for each given a1 ∈ A. The N -invariance follows from∫
P

f(n−1
1 an)dadn =

∫
A

da

∫
N

f(aa−1n−1
1 an)dn

=

∫
A

da

∫
N

f(an)dn (since a−1n−1
1 a ∈ N)

=

∫
P

f(an)dadn.

Therefore, dadn is left invariant on P .
On the other hand, if µG is a given Haar measure on G, one knows from

Theorem 2.3 that µG/K is left G-invariant and its induced measure on P (still
denoted as µG/K) is a left Haar measure. In particular, µG/K = cdadn for some
c > 0. Since µG = µG/K × dk via the identification G/K ×K ≈ G, one co that

µG = cdadndk.

In particular, dadndk is a Haar measure on G.

Let dx , dadndk. Since A normalises N , one also has P = NA and thus
G = NAK. There is also a measure dndadk induced by the NAK-decomposition.
To understand the relation between dx and dndadk, we need the following lemma.

Lemma 2.10. There is a continuous homomorphism α : A→ R∗, such that∫
N

f(an)dn = α(a)−1

∫
N

f(na)dn (2.10)

for any a ∈ A and f ∈ Cc(P ). In addition, the modular function of P is given by

∆(p) = α(a)−1, p = an ∈ P.

Proof. Given a ∈ A, define

Λa(f) ,
∫
N

f(na)dn, f ∈ Cc(P ).

It is plain to check that Λa(f) is a left Haar functional on Cc(P ). By uniqueness
one knows that there exists α(a) > 0 such that

Λa(f) = α(a)

∫
N

f(an)dn, ∀f ∈ Cc(P ).
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The continuity and homomorphism property of α follows from the same reason as
for the case of the modular function ∆ (cf. Proposition 2.1).

To prove the second part of the lemma, consider the left Haar functional

Λ(f) ,
∫
P

f(an)dadn, f ∈ Cc(P ).

Since N is unimodular, it is obvious that Λ is right N -invariant. In addition,
given a1 ∈ A, one has∫

P

f(ana1)dadn =

∫
A

( ∫
N

f(aa1a
−1
1 na1)dn

)
da

= α(a1)

∫
A

( ∫
N

f(aa1n)dn
)
da

= α(a1)

∫
A

( ∫
N

f(an)dn
)
da (since A is unimodular)

= α(a1)

∫
P

f(an)dadn.

By the definition of the modular function, one co that ∆(an) = α(a)−1.

Remark 2.3. In general, P may not be unimodular (when the homomorphism α
is non-trivial).

The relation between dx and dndadk is given by the following result.

Proposition 2.7. Let α : A → R∗ be the homomorphism given by Lemma 2.10.
Then

dx = α(a)−1dndadk.

Proof. For f ∈ Cc(G), one has∫
G

f(x)dx =

∫
A×N×K

f(ank)dadndk =

∫
K

dk

∫
A

da

∫
N

f(ank)dn

=

∫
K

dk

∫
A

α(a)−1da

∫
N

f(nak)dn

=

∫
N×A×K

α(a)−1f(nak)dndadk.

The result thus follows.
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Any of the following decompositions (the latter two are obtained by taking
inverse of the former two)

G = ANK or NAK or KAN or KNA

is known as the Iwasawa decomposition of G.

2.7 An example: the special linear group SL2(R)

We conclude by an enlightening example: the special linear group SL2(R). Math-
ematically, it is defined by

SL2(R) ,
{
g ∈ Mat(2;R) : det g = 1

}
.

2.7.1 SL2(R)-action via the Möbius transformation.

From a geometric viewpoint, SL2(R) acts on the upper half-planeH = {x+yi : y >
0} by isometry, where the group action is defined by the Möbius transformation
and H is equipped with the Lobachevsky hyperbolic metric.

To elaborate this, given g =
( α β
γ δ

)
∈ SL2(R) and z = x+ yi ∈ H, we define

g(z) =
αz + β

γz + δ
=

(αγ|z|2 + βδ) + (αδz + βγz̄)

|γz + δ|2
.

Since det g = 1, it follows that

Im(g(z)) =
Im(z)

|γz + δ|2
. (2.11)

In particular, g leaves H invariant.
Next, we try to figure out the isotropy subgroup at i, i.e. the subgroup of

SL2(R) leaving i fixed. Suppose that g =
( α β
γ δ

)
fixes i. Then αi+β

γi+δ
= i, or

equivalently
αi+ β = δi− γ.

It follows that
α = δ, β = −γ.
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Note that α2 + γ2 = 1 since det g = 1. By writing α = cos θ, γ = sin θ, one sees
that g belongs to the circle subgroup

K =

{
k =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
∼= S1 = {eiθ : θ ∈ R}. (2.12)

Conversely, it is obvious that any element in K leaves i fixed. Therefore, K is the
isotropy subgroup at i. It follows that the coset space SL2(R)/K is diffeomorphic
to H .

One can say more about this SL2(R)-action on H. Recall that, when equipped
with the Riemannian metric

ds2 =
dx2 + dy2

y2
, (2.13)

the space H becomes a hyperbolic manifold (the Lobachevsky plane) of constant
negative curvature −1.
Proposition 2.8. Under the hyperbolic metric, SL2(R) acts on H by isometry.
Proof. Using complex coordinates (z, z̄), the hyperbolic metric can be written as

ds2 =
dzdz̄ + dz̄dz

2(Imz)2
, z ∈ H.

Let g =
( α β
γ δ

)
∈ SL2(R) and

w , g(z) =
αz + β

γz + δ
.

Then
∂w

∂z
=

1

(γz + δ)2
,
∂w̄

∂z̄
=

1

(γz̄ + δ)2
,
∂w

∂z̄
=
∂w̄

∂z
= 0.

It follows that

g∗(ds2) =
dwdw̄ + dw̄dw

2(Imw)2

=
∂w

∂z
· ∂w̄
∂z̄
· dzdz̄ + dz̄dz

2(Imw)2

=
dzdz̄ + dz̄dz

2(Imw)2 · |γz + δ|4

=
dzdz̄ + dz̄dz

2(Imz)2
.

To reach the last equality, one has used the relation (2.11). Therefore, g∗(ds2) =
ds2 and thus g is an isometry.
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2.7.2 The Iwasawa decomposition of SL2(R)

Although one can consider the ANK decomposition as before, from the geometric
viewpoint it is more natural to consider the NAK decomposition. We first define
these closed subgroups respectively:

A ,

{
a =

(
r 0
0 1/r

)
: r > 0

}
, N ,

{
n =

(
1 x
0 1

)
: x ∈ R

}
and K is the previous circle group defined by (2.12). Note that A normalises N,
as seen from the following relation:(

r 0
0 1/r

)
·
(

1 x
0 1

)
=

(
1 r2x
0 1

)
·
(
r 0
0 1/r

)
(2.14)

To write down the decomposition SL2(R) = NAK effectively, the main obser-
vation is that the group action g 7→ g(i) restricts to a diffeomorphism between the
subgroup P = NA and the upper half-plane H. Indeed, plain calculation shows
that (

1 x
0 1

)
·
(
r 0
0 1/r

)
(i) = x+ r2i. (2.15)

Now suppose that

g =

(
α β
γ δ

)
=

(
1 x
0 1

)
·
(
r 0
0 1/r

)
·
(

cos θ − sin θ
sin θ cos θ

)
. (2.16)

By using the relation (2.15), one has

g(i) =
αγ + βδ

γ2 + δ2
+

1

γ2 + δ2
i = x+ r2i.

As a result,

x =
αγ + βδ

γ2 + δ2
, r =

1√
γ2 + δ2

. (2.17)

To figure out θ, explicit multiplication shows that(
α β
γ δ

)
=

(
r cos θ − x

r
sin θ r sin θ + x

r
cos θ

−1
r

sin θ 1
r

cos θ

)
.

By using the expression for r, one sees that

cos θ =
δ√

γ2 + δ2
, sin θ = − γ√

γ2 + δ2
,
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or more concisely,

eiθ =
δ − iγ√
γ2 + δ2

∈ K. (2.18)

The equations (2.17) and (2.18) gives the NAK decomposition of SL2(R) in ex-
plicit form, which not only shows the existence of such decomposition but also
gives uniqueness. By using the relation (2.14), it is easy to write down the ANK
decomposition as well. Note that P = NA = AN.

2.7.3 Haar measures on SL2(R)

Before considering Haar measures, we first show that SL2(R) is unimodular,
namely, the modular function ∆ ≡ 1. Recall that ∆ is a continuous homomor-
phism from SL2(R) to R∗. It is thus sufficient to establish the following more
general fact.

Proposition 2.9. There are no non-trivial continuous homomorphisms from SL2(R)
to R∗.

Proof. By taking logarithm, it suffices show that any continuous homomorphism
from SL2(R) to the additive group (R,+) is trivial. Let ϕ : SL2(R)→ R be such
a homomorphism. It follows from the Iwasawa decomposition that

ϕ(nak) = ϕ(n) + ϕ(a) + ϕ(k).

Therefore, it is enough to show that ϕ is trivial when restricted on the subgroups
N,A,K respectively.

In the first place, K contains a dense subset K0 of elements of finite order.
Since every non-zero element in R has infinite order, one knows that ϕ|K0 = 0.

Therefore, ϕ|K = 0. Next, we consider ϕ|A. Let a =
( r 0

0 1/r

)
∈ A. Since

(
0 −1
1 0

)
· a ·

(
0 −1
1 0

)−1

= a−1,

one has
ϕ(a) = ϕ(a−1) = −ϕ(a),

giving ϕ(a) = 0. Therefore, ϕ|A = 0. Finally, to consider ϕ|N let us observe that
N is isomorphic to R through the obvious identification

N 3
(

1 x
0 1

)
←→ x ∈ R.
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Since any homomorphism over R is given by the multiplication by a real number,
there exists t ∈ R such that

ϕ

((
1 x
0 1

))
= tx ∀x ∈ R.

On the other hand, by applying ϕ to the relation (2.14), one has

tx = tr2x ∀r > 0 and x ∈ R.

Therefore, t = 0 and thus ϕ|N = 0.

Since SL2(R) is unimodular and K is clearly unimodular as a compact group,
the previous general results apply to the current situation. In a canonical way,
the Haar measures on A,N,K are chosen as

da =
d+r

r
, dx, dθ

respectively, where d+r is the Lebesgue measure on R∗, dx is the Lebesgue measure
on R and dθ is the normalised uniform measure on S1. It follows from Proposition
2.6 and Proposition 2.7 that

dx = dadndk = α(a)−1dndadk

defines a Haar measure on SL2(R).

Lemma 2.11. The homomorphism α is given by α(a) = r2 for a =
( r 0

0 1/r

)
∈

A.

Proof. Let a =
( r 0

0 1/r

)
be fixed and f ∈ Cc(P ). Define

ϕ(b) , f

(
a ·
(

1 b
0 1

))
, ψ(c) , f

((
1 c
0 1

)
· a
)
, b, c ∈ R.

By using (2.14), one easily sees that ϕ(b) = ψ(r2b). Therefore,∫
N

f(na)dn =

∫
R
ψ(c)dc = r2

∫
R
ϕ(b)db = r2

∫
N

f(an)dn.

According to (2.10), one co that α(a) = r2.
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Finally, it is interesting to observe that under the diffeomorphism (2.15) be-
tween P = NA and H, the measure on H induced by 2α(a)−1dnda is precisely
the Riemannian volume form dxdy

y2
with respect to the hyperbolic metric ds2 (cf.

(2.13)). To see this, note that in terms of the relevant coordinates the map P → H
is given by

(x, r) 7→ (x, y = r2).

As a result, one has dy = 2rd+r and thus

dxdy

y2
=

2rdxd+r

r4
=

2

r2
dx
d+r

r
= 2α(a)−1dnda.

By Lemma 2.10, the above measure is also equal to 2dadn under the decomposition
P = AN.
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3 The Peter-Weyl Theorem and Fourier analysis
on compact Hausdorff groups

The classical theory of Fourier series asserts that every element f ∈ L2(S1, dθ) (S1

is the unit circle, dθ is the normalised Haar measure so that S1 has unit volume)
admits an L2-decomposition

f(x) =
∑
k∈Z

cke
ikθ, (3.1)

where ck , 〈f, eikθ〉L2 is the k-th Fourier coefficient of f . The family {eikθ : k ∈
Z} of continuous functions form an orthonormal basis (ONB) of L2(S1, dθ). The
equation (3.1) can be viewed as the Fourier inversion formula in this context.
The classical Parseval’s Theorem asserts that

‖f‖2
L2 =

∑
k∈Z

|ck|2.

One can think of Z as the “spectrum” of S1: the “frequencies” are given by the
integers each occurring with multiplicity one.

There is an elegant counterpart of the above classical results in the context of
compact Hausdorff groups. Let G be such a group with normalised Haar measure
dx. In this case, the inversion formula (3.1) for f ∈ L2(G) takes the form

f(x) =
∑
π

dπ〈f̂(π), π(x)∗〉HS (3.2)

Here the summation is taken over all unitary irreducible representations π (they
are all finite dimensional). The object f̂(π) is interpreted as the Fourier coefficient
at π and dπ is the dimension of the representation π. Parseval’s theorem in this
situation becomes

‖f‖2
L2 =

∑
π

dπ‖f̂(π)‖2
HS, (3.3)

which is better known as Plancherel’s theorem. All the objects appearing in these
identities will be made precise later on. In vague terms, the “spectrum” of G is
indexed by unitary irreducible representations, and each “frequency” occurs with
multiplicity given by the dimension of the underlying representation.

The purpose of this section is to give a self-contained discussion on these
results, which were essentially due to F. Peter and H. Weyl in the 1920s. A
substantial part of the theory is related to understanding the structure of unitary
representations (the Peter-Weyl theorem).
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3.1 Basic definitions

We begin with some general definitions about group representations. Let G be a
locally compact Hausdorff group. All Banach and Hilbert spaces are assumed to
be defined over C.

Definition 3.1. Let H be a Banach space. A representation of G on H is a group
homomorphism π : G→ Aut(H) (the group of continuous linear automorphisms
on H) such that for every v ∈ H, the map x 7→ π(x)v is continuous. When H is a
Hilbert space, a representation is said to be unitary if π(x) is a unitary operator
on H for every x ∈ G. A representation is said to be finite dimensional if H is
finite dimensional.

Definition 3.2. Let π : G → Aut(H) be a given representation. A G-invariant
subspace is a closed subspace W of H such that π(x)W ⊆ W for any x ∈ G. A
representation π is irreducible if H does not possess G-invariance subspaces other
than {0} and H.

Definition 3.3. Let π : G → Aut(H) be a unitary representation of G on some
Hilbert space H. We say that H is completely reducible for π, if H can be written
as an orthogonal direct sum of non-trivial irreducible subspaces.

We often do not distinguish representations that are G-isomorphic. To make
this precise, let us introduce the following definition.

Definition 3.4. Let πi : G → Aut(Hi) (i = 1, 2) be two representations of G,
and let Φ : H1 → H2 be a bounded linear operator. We say that Φ is a G-
homomorphism if Φ ◦ π1(x) = π2(x) ◦Φ for all x ∈ G. It is a G-isomorphism if Φ
is bijective.

From now on, we restrict ourselves to the case when G is a compact Hausdorff
group. From Proposition 2.4, one knows that G is unimodular. We use dx to
denote the normalised Haar measure on G, i.e.

∫
G
dx = 1. Unless otherwise

stated, we only consider representations of G on Hilbert spaces.
The first observation in this case is that essentially one only needs to consider

unitary representations. This is due to the following simple but useful principle
of averaging, which is a nice consequence of compactness.

Lemma 3.1. Let π : G → Aut(H) be a representation of G on a Hilbert space
(H, 〈·, ·〉). Define a new inner product

〈v, w〉G ,
∫
G

〈π(x)v, π(x)w〉dx, v, w ∈ H.
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Then 〈·, ·〉G and 〈·, ·〉 are equivalent. In addition, π is a unitary representation
under 〈·, ·〉G, i.e.

〈π(x)v, π(x)w〉G = 〈v, w〉G
for all x ∈ G and v, w ∈ H.

Proof. For each v ∈ H, since x 7→ π(x)v is continuous, from the compactness of
G one knows that

sup
x∈G
‖π(x)v‖ <∞.

It follows from the Uniform Boundedness Theorem (cf. Theorem C.1 in Appendix
C) that

M , sup
x∈G
‖π(x)‖H→H <∞.

As a result, one has

‖v‖2
G =

∫
G

‖π(x)v‖2dx 6M2‖v‖2.

Conversely, one also has

‖v‖2 = ‖π(x−1)π(x)v‖2 6M2‖π(x)v‖2 ∀x ∈ G.

After integration over G, one obtains

‖v‖2 6M2‖v‖2
G.

Therefore, the inner products 〈·, ·〉G and 〈·, ·〉 are equivalent. To show the unitarity
of π under 〈·, ·〉G, one simply observes that

〈π(x)v, π(x)w〉G =

∫
G

〈π(y)π(x)v, π(y)π(x)w〉dy

=

∫
G

〈π(yx)v, π(yx)w〉dy

=

∫
G

〈π(z)v, π(z)w〉dz (right invariance of dy)

= 〈v, w〉G.
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As a result of Lemma 3.1, one can restrict to unitary representations in the
context of Hilbert spaces.

There is a particularly important unitary representation known as the regular
representation which we now describe. Let L2(G) be the space of complex-valued
square integrable functions on G. L2(G) is a Hilbert space under the inner product

〈f, g〉L2 ,
∫
G

f(x)g(x)dx.

For each y ∈ G, we define its action T (y) on L2(G) by right translation, namely

(T (y)f)(x) , f(xy), f ∈ L2(G).

From the invariance of the Haar measure dx, it is routine to check that

T : G→ Aut(L2(G))

defines a unitary representation of G on L2(G).

Definition 3.5. The above representation T is called the regular representation
of G.

Among other properties, the importance of the regular representation lies in
the following two aspects:

(i) it is completely reducible;
(ii) all unitary irreducible representations of G are contained in the regular rep-
resentation.

The precise formulation of this fact as well as other related properties is the
content of the Peter-Weyl theorem, which will be elaborated in Section 3.3 below.

3.2 A complete reducibility theorem for compact operators

The reason of reducibility is closely related to the use of compact operators due to
the spectral theorem (cf. Theorem C.3 in Appendix C). Here we derive a general
fact about compact operators which will be used later on.

We first give a few more definitions. Let A be a family of bounded linear
operators on a Hilbert space H.

Definition 3.6. We say that A is ∗-closed, if

A ∈ A =⇒ A∗ ∈ A
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where A∗ denotes the adjoint of A (i.e. 〈Av,w〉 = 〈v, A∗w〉). We say that A is an
algebra, if

A,B ∈ A, c ∈ C =⇒ cA+B, AB ∈ A.

Definition 3.7. A closed subspaceW of H is said to be A-invariant, if AW ⊆ W
for all A ∈ A. We say that H is A-irreducible if it does not contain A-invariant
subspaces other than {0} andH. We say thatH is completely reducible for A, ifH
can be written as an orthogonal direct sum of non-trivial A-irreducible subspaces:

H =
⊕
i∈I

Hi, (3.4)

where the right hand side of (3.4) is understood as the closure of the algebraic
direct sum.

one has the following complete reducibility property for a ∗-closed algebra of
compact operators.

Proposition 3.1. Let A be a ∗-closed algebra of compact operators acting on a
Hilbert space H. Then the following statements hold true.

(i) H is completely reducible.
(ii) Let Hi be an A-irreducible subspace appearing in the decomposition (3.4). If
at least one member of A acts non-trivially on Hi, then Hi occurs for at most
finitely many times in the decomposition (up to A-isomorphism).

Proof. (i) The key step is to show that there exists a non-trivial A-irreducible
subspace of H. If this is true, the rest of the argument is a standard application
of Zorn’s lemma (cf. Theorem A.1 in Appendix A). Indeed, let P denote the
set of families of A-irreducible orthogonal subspaces of H. In other words, a
generic element of P is a family F = {Hi : i ∈ I} of subspaces where each Hi

is irreducible and Hi ⊥ Hj if i 6= j ∈ I. We define a partial order on P by the
natural inclusion. It can be checked that every totally ordered subset of P has an
upper bound in P . According to Zorn’s lemma, there is a maximal element, say
F = {Hi : i ∈ I}. Let V , ⊕i∈IHi (more precisely, the closure of the algebraic
direct sum). We claim that V = H. If this were not true, then V ⊥ is a non-trivial
A-invariant subspace of H. From what we have presumed, one may find a non-
trivial irreducible subspace W of V ⊥. But {W} ∪ F is an element of P that is
strictly larger than F , contradicting the maximality of F . Therefore, V = H.

It remains to establish the existence of a non-trivial A-irreducible subspace.
One may assume that there is at least a non-zero element A ∈ A for otherwise
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the claim is trivial. Note that both of B , i(A − A∗) and C , A + A∗ are self-
adjoint, and at least one of them is non-zero. Therefore, one may find a non-zero
self-adjoint element in A (still denoted as A). Let Aλ be a non-zero eigenspace of
A corresponding to some eigenvalue λ 6= 0 (which must exist).

We define M to be the collection of subspaces of the form M ∩ Aλ, where
M is an A-invariant subspace and M ∩ Aλ 6= {0}. The class M is non-empty
since Av ∩ Aλ ∈ M for any v ∈ Aλ. Let M∗ be an A-invariant subspace such
that M∗ ∩Aλ has the minimal dimension among all members ofM. Pick a non-
zero vector v ∈ M∗ ∩ Aλ. We claim that the A-invariant subspace W , Av is
irreducible.

In fact, suppose that E is a non-trivial A-invariant subspace of W . Let E ′
be the orthogonal complement of E in W. Note that E ′ is also A-invariant. One
writes v = v1 + v2 where v1 ∈ E and v2 ∈ E ′. If v1 = 0, then v = v2 and thus
W ⊆ E ′ ⊆ W , showing that E = {0} which is a contradiction. Therefore, v1 6= 0.
On the other hand, one has

λv1 + λv2 = λv = Av = Av1 + Av2.

By the A-invariance of E and E ′, one knows that Av1 ∈ E, Av2 ∈ E⊥, and thus
v1, v2 also belong to Aλ. If v2 6= 0, one knows that v is an element of M∗∩Aλ that
does not belong to E ∩ Aλ. In particular, one has

0 < dimE ∩ Aλ < dimM∗ ∩ Aλ,

which contradicts the definition of M∗. Therefore, v2 = 0. As a result, one has
v = v1 and thus W ⊆ E ⊆ W. This yields E = W and concludes the irreducibility
of W .
(ii) Suppose on the contrary that Hi occurs (A-isomorphically) for infinitely many
times in the decomposition (3.4), say

H1
∼= H2

∼= · · · ∼= Hn
∼= · · · (3.5)

and all these components are orthogonal. As in Part (i), one can find A ∈ A
such that A|H1 6= 0 and A is self-adjoint. Let v1 ∈ H1 be a unit eigenvector of A
corresponding to some eigenvalue λ 6= 0. Define vn ∈ Hn (n > 2) to be the image
of v1 under the isomorphism (3.5). Then vn a unit λ-eigenvector of A for each
n. It follows from the compactness of A that {Avn : n > 1} has a convergent
subsequence. But this is not possible since

Avn = λvn ∈ Hn

and the subspaces Hn’s are orthogonal to each other.
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3.3 The Peter-Weyl theorem

In this subsection, we establish the structure theorem for unitary representations
of a compact Hausdorff group G (the Peter-Weyl theorem). This is the core of
Fourier analysis on G. The main result is stated as follows, which contains several
major parts.

Theorem 3.1 (The Peter-Weyl theorem). Let G be a compact Hausdorff group
and let T : G → Aut(L2(G)) be its regular representation. Then the following
statements hold true.

(i) All unitary irreducible representations of G are finite dimensional.
(ii) The Hilbert space L2(G) is completely reducible for T , i.e. L2(G) can be
written as an orthogonal direct sum of non-trivial T -irreducible subspaces:

L2(G) =
⊕
i∈I

Hi. (3.6)

In addition, each irreducible subspace Hi arising in the decomposition is finite
dimensional and occurs for at most finitely many times (up to G-isomorphism).
(iii) Let σ : G → Aut(H) be a unitary irreducible representation and H 6= {0}.
Then H occurs in the expansion (3.6) in the sense that there exists a component
Hi in the decomposition (3.6) such that H is G-isomorphic to Hi.
(iv) Let σ : G → Aut(H) be a unitary representation. Then H is completely
reducible for the representation σ.

There is a more quantitative part of the Peter-Weyl theorem telling us how
to generate the space L2(G) by certain “special” functions arising from unitary
irreducible representations, and these functions share some interesting orthogo-
nality properties. This will be discussed in Section 3.3.3 below. The rest of this
subsection is devoted to the proof of Theorem 3.1.

3.3.1 Finite dimensionality of irreducible representations

We first prove Part (i) of Theorem 3.1, which is a quite surprising fact on its own.

Theorem 3.2. Let π : G → Aut (H) be a unitary irreducible representation.
Then H is finite dimensional.

Proof. Let u be a non-zero unit vector in H, and let P : H → H denote the
projection operator onto the one dimensional subspace Span{u}. Define a bounded
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linear operator Q : H → H by

Q(v) ,
∫
G

π(x−1)Pπ(x)vdx, v ∈ H.

By using the fact that π is unitary and P is self-adjoint, it is easily checked that
Q is a self-adjoint and commutes with π(x) for all x ∈ G. Since π is irreducible,
from Schur’s lemma (cf. Theorem C.4 in Appendix C) one knows that Q = c · Id
for some c ∈ C. Since

〈Qu, u〉H =

∫
G

〈Pπ(x)u, π(x)u〉Hdx =

∫
G

‖Pπ(x)u‖2
Hdx,

it is clear that Q 6= 0 and thus c 6= 0.
We assume on the contrary that H is infinite dimensional. Let {en : n > 1}

be an ONB of H. Given x ∈ G, let e′n , π(x)en. Note that {e′n : n > 1} is also an
ONB of H. It follows that

〈π−1(x)Pπ(x)en, en〉H = 〈Pe′n, e′n〉H = 〈u, e′n〉2H ,

and thus
∞∑
n=1

〈π−1(x)Pπ(x)en, en〉H =
∞∑
n=1

〈u, e′n〉2H = ‖u‖2
H = 1.

Therefore,

∞ = c ·
∞∑
n=1

〈en, en〉H =
∞∑
n=1

〈Qen, en〉H

=

∫
G

∞∑
n=1

〈π−1(x)Pπ(x)en, en〉Hdx = 1,

which is absurd. Consequently, H must be finite dimensional.

Remark 3.1. A careful examination of the proof shows that Q is a self-adjoint
positive-definite operator that is of trace class. As a result, it is a compact op-
erator. However, a compact operator cannot be a scalar multiple of the identity
operator unless the underlying space is finite dimensional.

Due to the above finite dimensionality property, one has the following simple
but quite useful fact for unitary irreducible representations.
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Proposition 3.2. (i) Suppose that σ : G → Aut(H1) and π : G → Aut(H2) are
two unitary irreducible representations. Let Φ : H1 → H2 be a G-homomorphism.
Then either Φ = 0 or it is a G-isomorphism.
(ii) Suppose that π : G → Aut(H) is a unitary irreducible representation and
Φ : H → H is a G-homomorphism. Then Φ = c · Id for some c ∈ C.

Proof. (i) The main observation is that KerΦ is an invariant subspace of H1 and
ImΦ is an invariant subspace of H2. If Φ is non-trivial, then KerΦ = {0} and
ImΦ = H2 since both of σ and π are irreducible. This implies that Φ is an
isomorphism.
(ii) Let c ∈ C be an eigenvalue of Φ which exists since H is finite dimensional.
Then Φ− c · Id is a G-homomorphism but not an isomorphism. According to Part
(i), one has Φ− c · Id = 0.

Remark 3.2. Proposition 3.2 is also known as Schur’s lemma. The proof is rather
simple due to finite dimensionality. It is possible to prove the result without using
finite dimensionality – in this case one needs to rely on the functional Schur’s
lemma in the context of Hilbert spaces (cf. Theorem C.4 in Appendix C).

The following property is the converse of Proposition 3.2, Part (ii). It provides
a criterion for irreducibility which will be useful when we study the example of
G = SU(2) (cf. Lemma 3.12 in Section 3.5.2 below).

Lemma 3.2. Let π : G → Aut(H) be a unitary representation. Suppose that
every G-homomorphism on H is a scalar multiple of the identity map. Then π is
irreducible.

Proof. Let W be a G-invariant subspace of H, and let P : H → H denote the
orthogonal projection onto W . It is easy to see that W⊥ is also a G-invariant
subspace, and as a result P is a G-homomorphism. By the assumption, one
knows that P = c · Id for some c ∈ C. This clearly implies thatW = {0} (if c = 0)
or W = H (if c 6= 0).

3.3.2 Induced representations of C(G) and complete reducibility of the
regular representation

The proof of the Peter-Weyl theorem uses a crucial idea of induced representations
of continuous functions which we now describe. Let G be a compact Hausdorff
group.
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Let C(G) denote the space of complex-valued continuous functions on G. Given
f, g ∈ C(G), their convolution is defined as

ϕ ∗ ψ(x) ,
∫
G

ϕ(xy−1)ψ(y)dy.

It follows that (C(G), ∗) is an algebra:

ϕ, ψ ∈ C(G), c ∈ C =⇒ cϕ+ ψ, ϕ ∗ ψ ∈ C(G).

We also set ϕ∗(x) , ϕ(x−1) for ϕ ∈ C(G).
Suppose that π : G→ Aut(H) be a representation of G on some Banach space

H. Given ϕ ∈ C(G), the representation π induces a natural action of ϕ on the
space H as endomorphisms (continuous linear transformations):

π1(ϕ)v =

∫
G

ϕ(x)π(x)vdx, v ∈ H.

Proposition 3.3. The action π1 : (C(G), ∗) → (End(H), ◦) is an algebra homo-
morphism. In addition, if π is a unitary representation of G on a Hilbert space
H, then

π1(ϕ)∗ = π1(ϕ∗) (3.7)

for all ϕ ∈ C(G).

Proof. We first check that π1(ϕ) is a bounded linear operator on H. Indeed, from
Theorem C.1 one knows that

M , sup
x∈G
‖π(x)‖H→H <∞.

Therefore,
‖π1(ϕ)v‖H 6M‖ϕ‖∞‖v‖H ∀v ∈ H.

The linearity of π1 is obvious. We now show that π1 is an algebra homomor-

57



phism. To see this, by definition one has

π1(ϕ ∗ ψ)(v) =

∫
G

ϕ ∗ ψ(z)π(z)vdz

=

∫
G

( ∫
G

ϕ(zy−1)ψ(y)dy
)
π(z)vdz

=

∫
G

ψ(y)dy

∫
G

ϕ(zy−1)π(z)vdz

=

∫
G

ψ(y)dy

∫
G

ϕ(x)π(xy)vdx (z = xy)

=

∫
G

ϕ(x)π(x)
( ∫

G

ψ(y)π(y)vdy
)
dx

=
(
π1(ϕ) ◦ π1(ψ)

)
(v).

Finally, we prove the relation (3.7). Let v, w ∈ H and ϕ ∈ C(G). Then

〈π1(ϕ)v, w〉H =

∫
G

ϕ(x)〈π(x)v, w〉Hdx

=

∫
G

ϕ(x)〈v, π(x−1)w〉Hdx

=

∫
G

ϕ∗(x)〈v, π(x)w〉Hdx (x 7→ x−1)

=

∫
G

〈v, ϕ∗(x)π(x)w〉Hdz

= 〈v, π1(ϕ∗)w〉H .

The relation (3.7) thus follows.

Remark 3.3. Although we mostly work with C(G)-actions, the same action by
L1(G)-functions is also well defined since G is compact.

Equivalence between G- and C(G)-actions

The actions of G and C(G) are essentially the same thing, as one can recover the
former from the latter by using a standard idea of approximation of identity.

Definition 3.8. Let x ∈ G. A Dirac sequence with respect to x is a sequence of
functions {ϕn : n > 1} ⊆ C(G) such that:
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(i) ϕn > 0;
(ii)

∫
G
ϕn(x)dx = 1;

(iii) for any neighbourhood V of x, one has suppϕn ⊆ V when n is large enough.

Dirac sequences can be easily constructed by using bump functions. In addi-
tion, if ϕn is a Dirac sequence with respect to the identity e, then for each x ∈ G,
the sequence lxϕn(·) , ϕn(x−1·) is a Dirac sequence with respect to x.

Using the notion of Dirac sequences, one can recover representations of G from
the induced representations of C(G).

Proposition 3.4. Let π : G→ Aut(H) be a representation of G on some Banach
space H. Let x ∈ G and let {ϕn} be a Dirac sequence with respect to x. Then for
each v ∈ H, one has

lim
n→∞

π1(ϕn)v = π(x)v.

Proof. Given ε > 0, there exists a neighbourhood V of x such that

‖π(y)v − π(x)v‖H < ε ∀y ∈ V.

It follows that ∥∥π1(ϕn)v − π(x)v
∥∥
H

=
∥∥∫

G

ϕn(y)π(y)vdy −
∫
G

ϕn(y)π(x)vdy
∥∥
H

=
∥∥∫

V

ϕn(y)
(
π(y)v − π(x)v

)
dy
∥∥
H

6 ε ·
∫
V

ϕn(y)dy

6 ε,

provided that n is large enough.

A direct corollary of Proposition 3.4 is the following result.

Corollary 3.1. Let π : G → Aut(H) be a representation of G on some Banach
space H and let W be a closed subspace of H. Then W is G-invariant if and
only if it is C(G)-invariant. In particular, W is G-irreducible if and only if it is
C(G)-irreducible.

Remark 3.4. Representations of continuous functions extend to the case when G
is locally compact. In this case, one needs to replace the algebra C(G) by Cc(G)
(compactly supported continuous functions).
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C(G)-action on L2(G) as compact operators

We now consider the action of C(G) induced by the regular representation T :
G→ Aut(L2(G)). Given a function ϕ ∈ C(G), we denote ϕ−(x) , ϕ(x−1).

Lemma 3.3. The induced representation T 1 of C(G) on L2(G) is given by

T 1(ϕ)f = f ∗ ϕ−, ∀ϕ ∈ C(G), f ∈ L2(G).

Proof. By definition, one has

(T 1(ϕ)f)(x) =

∫
G

ϕ(y)(T (y)f)(x)dy =

∫
G

ϕ(y)f(xy)dy

=

∫
G

f(xy−1)ϕ(y−1)dy (3.8)

= f ∗ ϕ−(x).

A major benefit of considering the induced C(G)-action is that it gives rise to
compact operators in the case of the regular representation.

Lemma 3.4. For each ϕ ∈ C(G), the induced action T 1(ϕ) : L2(G) → L2(G) is
a compact operator.

Proof. The main idea is to see that T 1(ϕ) can be approximated by operators with
finite rank (i.e. having finite dimensional range). By a change of variables, one
first rewrites (3.8) as

(T 1(ϕ)f)(x) =

∫
G

f(y)ϕ(x−1y)dy. (3.9)

In particular, the action of ϕ on L2(G) is given by a kernel (x, y) 7→ ϕ(x−1y).
Let C(G × G) denote the space of continuous functions on G × G. Consider

the family A ⊆ C(G×G) of functions defined by

A = Span
{
ϕ(x)ψ(y) : ϕ, ψ ∈ C(G)

}
.

It follows thatA is an algebra (under the pointwise multiplication) and it separates
points in G × G. According to the Stone-Weierstrass theorem (cf. Theorem C.2
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in Appendix C), A is dense in C(G × G) under the uniform topology. Note that
each Φ ∈ C(G×G) induces an integral operator on L2(G) defined by

TΦ(f)(x) ,
∫
G

f(y)Φ(x, y)dy.

It is easy to see that

Φn → Φ uniformly =⇒ TΦn → TΦ as bounded linear operators on L2(G).

In particular, the induced action T 1(ϕ) given by (3.9) can be approximated by
the operators TΦ (under the operator norm) where Φ ∈ A.

On the other hand, if Φ(x, y) , ϕ(x)ψ(y), the integral operator TΦ is given by

TΦ(f)(x) =

∫
G

f(y)ϕ(x)ψ(y)dy =
( ∫

G

f(y)ψ(y)dy
)
· ϕ(x).

In particular, TΦ has a one dimensional range. It follows that the integral operators
on L2(G) induced by the elements in A are all of finite rank. As a result, one
sees that T 1(ϕ) can be approximated by operators of finite rank, and is thus a
compact operator.

Complete reducibility of the regular representation

Proposition 3.1 and Corollary 3.1 naturally lead us to the complete reducibility
of the regular representation, yielding the proof of Part (ii) of the Peter-Weyl
theorem.

Theorem 3.3. The regular representation T : G → Aut(L2(G)) is completely
reducible, i.e. L2(G) can be written as an orthogonal direct sum of non-trivial
T -irreducible subspaces. In addition, each irreducible subspace arising in the de-
composition is finite dimensional and occurs for at most finitely many times (up
to G-isomorphism).

Proof. From Proposition 3.3 and Lemma 3.4, one sees that T 1(C(G)) is an alge-
bra of compact operators acting on L2(G). In addition, since T is unitary, the
relation (3.7) shows that T 1(C(G)) is ∗-closed. It follows from Proposition 3.1
that L2(G) admits an orthogonal decomposition into non-trivial C(G)-irreducible
subspaces. Let Hπ be any component appearing in the decomposition . From
Corollary 3.1, one knows that C(G)-irreducibility and G-irreducibility are equiva-
lent. According to Theorem 3.2, Hπ is finite dimensional. Finally, since π(e) = Id,
using approximation of identity one sees that at least one member of C(G) acts
non-trivially on Hπ. Therefore, Hπ occurs for at most finitely many times (up to
G-isomorphism).
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3.3.3 Matrix coefficients and their denseness in L2(G)

The Peter-Weyl theorem has a more quantitative part involving the so-called
matrix coefficients which we now describe.

Definition 3.9. Let π : G → Aut(H) be a representation of G on some Banach
space H. Given λ ∈ H∗ and v ∈ H, the continuous function

πλ,v(x) , λ(π(x)v), x ∈ G

is called a coefficient function associated with π. When H is a Hilbert space, λ is
represented by a vector w and one can also write

πλ,v(x) = 〈π(x)v, w〉H .

A matrix coefficient of G is a coefficient function associated with a finite dimen-
sional representation of G.

The aim of this part is to prove the following result, which is part of the
Peter-Weyl theorem that is not stated in Theorem 3.1.

Theorem 3.4. Matrix coefficients of G are dense in L2(G).

To prove the theorem, we first introduce the following useful characterisation
of matrix coefficients.

Lemma 3.5. Let f ∈ C(G). Then f is a matrix coefficient of G if and only if
{T (y)f : y ∈ G} span a finite dimensional vector space.

Proof. Necessity. Suppose that f is a matrix coefficient of G, say f(x) = λ(π(x)v)
for some finite dimensional representation π : G→ Aut(H). Then for each given
y ∈ G, one has

(T (y)f)(x) = f(xy) = λ(π(x)π(y)v), x ∈ G.

In particular, T (y)f is also a matrix coefficient. But since dimH <∞, the space
of all coefficient functions associated with π has dimension at most (dimH)2.
Therefore, {T (y)f : y ∈ G} span a finite dimensional space.

Sufficiency. Let H , Span{T (y)f : y ∈ G} ⊆ C(G). Note that the restriction
of T on H is a finite dimensional representation of G. Define λ ∈ H∗ by λ(ϕ) ,
ϕ(e). Then

λ(T (x)f) = (T (x)f)(e) = f(x), x ∈ G.
As a result, one sees that f is a matrix coefficient.
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In addition to Lemma 3.5, our proof of Theorem 3.4 also relies on the following
nice observation which provides a natural way of constructing ( finite dimensional)
T -invariant subspaces of L2(G). Consider the following counterpart of the regular
representation (defined by left translation instead):

L : L2(G)→ L2(G), (L(y)f)(x) , f(y−1x).

Given ϕ ∈ C(G), recall that L1(ϕ) is the induced representation of ϕ. Similar to
Lemma 3.3, it can be shown that L1(ϕ)f = ϕ∗f. In particular, L1(ϕ) is a compact
operator on L2(G). Suppose further that ϕ is symmetric, i.e. ϕ(x) = ϕ(x−1).
Then L1(ϕ) is self-adjoint. According to the spectral theorem (cf. Theorem C.3
in Appendix C), one can write

L2(G) =
⊕
λ

Hλ, (3.10)

where Hλ are orthogonal λ-eigenspaces of L1(ϕ) and dimHλ < ∞ when λ 6= 0.
Here the set {λ : Hλ 6= {0}} is a countable subset of R with λ = 0 being the only
possible accumulation point.

Lemma 3.6. For each λ 6= 0, the subspace Hλ is T -invariant.

Proof. Let f ∈ Hλ so that

(L1(ϕ)f)(u) =

∫
G

ϕ(uv−1)f(v)dv = λf(u), u ∈ G.

Then

(L1(ϕ)T (x)f)(y) =

∫
G

ϕ(yz−1)(T (x)f)(z)dz

=

∫
G

ϕ(yz−1)f(zx)dz

=

∫
G

ϕ(yxv−1)f(v)dv

= λf(yx) = λ(T (x)f)(y).

Therefore, T (x)f ∈ Hλ.

We are now in a position to prove Theorem 3.4.
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Proof of Theorem 3.4. We prove a stronger result that the matrix coefficients are
dense in C(G) under the uniform topology. The L2-denseness follows from this
trivially. Let f ∈ C(G) be fixed. Given ε > 0, by applying Proposition 3.4 to the
action L on the Banach space (C(G), ‖ · ‖∞), one can find ϕ ∈ C(G) such that

‖L1(ϕ)f − f‖∞ < ε.

Note that ϕ is constructed from a Dirac sequence with respect to the identity e,
and is thus supported in a small neighbourhood of e. By considering ϕ(x)+ϕ(x−1)

2

if necessary, one may assume that ϕ(x) = ϕ(x−1). In this case, L1(ϕ) is compact
and self-adjoint. Let (3.10) be its spectral decomposition. For each η > 0, we
define

Wη ,
⊕
λ:|λ|>η

Hλ.

According to Lemma 3.6, Wη is a finite dimensional, T -invariant subspace of
L2(G). It follows from Lemma 3.5 that elements in Wη are matrix coefficients of
G.

Let f1 denote the projection of f onto H0 = kerL1(ϕ). To complete the proof,
one chooses η small enough so that

‖f − f1 − f2‖L2 <
ε

‖ϕ‖∞
,

where f2 is the projection of f onto the subspace Wη. It follows that L1(ϕ)(f2) ∈
Wη is a matrix coefficient of G. In addition, one has

‖f − L1(ϕ)(f2)‖∞ 6 ‖f − L1(ϕ)(f)‖∞ + ‖L1(ϕ)(f − f2)‖∞
= ‖f − L1(ϕ)(f)‖∞ + ‖L1(ϕ)(f − f1 − f2)‖∞
6 ε+ ‖ϕ‖∞ · ‖f − f1 − f2‖L1

6 ε+ ‖ϕ‖∞ · ‖f − f1 − f2‖L2

< 2ε.

Since ε is arbitrary, one co that f can be approximated uniformly by matrix
coefficients on G. This completes the proof of the theorem.

3.3.4 Schur’s orthogonality relations

Our next step is to understand several orthogonal relations for the matrix co-
efficients as well as the so-called characters. Let π : G → Aut(H) be a uni-
tary irreducible representation. Recall from Theorem 3.2 that dimH < ∞. Let
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{e1, · · · , en} be an ONB of H. The functions

{πij(x) , 〈π(x)ei, ej〉 : 1 6 i, j 6 n}

form a natural family of matrix coefficients associated with the representation π
(as we will see, they are orthogonal to each other).

Definition 3.10. The character of π is defined by its trace function:

χ(x) , Tr(π(x)) =
n∑
i=1

πii(x), x ∈ G.

Note that G-isomorphic representations have the same character.
We would like to know how the coefficient functions and the character (as func-

tions in C(G)) of a given representation act on another arbitrary representation.
The key observation is contained in the lemma below. Recall that ϕ−(x) , ϕ(x−1)
for ϕ ∈ C(G).

Lemma 3.7. Let σ : G→ Aut(H1) and π : G→ Aut(H2) be two representations
of G on Banach spaces H1, H2 respectively. Let λ ∈ H∗1 and w ∈ H2 be fixed.
Then the operator

v 7→ Lλ,w(v) , π1(σ−λ,v)(w)

defines a G-homomorphism from H1 to H2.

Proof. This is simple unwinding of definition: for each x ∈ G one has

π(x)Lλ,w(v) =

∫
G

σλ,v(y
−1)π(xy)wdy

=

∫
G

λ
(
σ(y−1)v

)
π(xy)wdy

=

∫
G

λ
(
σ(z−1)σ(x)v

)
π(z)wdz

= Lλ,w(σ(x)v).

Lemma 3.7 together with Schur’s Lemma (cf. Proposition 3.2) allow us to de-
scribe actions of coefficient functions and characters easily. Let σ : G→ Aut(H1)
and π : G → Aut(H2) be two unitary irreducible representations. In what fol-
lows, we discuss the cases when σ, π are distinct (i.e. non-G-isomorphic) and
G-isomorphic separately. Note that we are now in the context of matrix coeffi-
cients since H1, H2 are finite dimensional.
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The non-isomorphic case

Suppose that σ : G → Aut(H1) and π : G → Aut(H2) are distinct, unitary irre-
ducible representations. In this case, one has the following orthogonality property
for the matrix coefficients.

Proposition 3.5. Let λ ∈ H∗1 and v ∈ H1. Then the function σ−λ,v acts trivially
on H2. In addition, matrix coefficients associated with σ and π are orthogonal to
each other:

〈σλ,v, πµ,w〉L2 =

∫
G

σλ,v(x)πµ,w(x)dx = 0 (3.11)

for any λ ∈ H∗1 , v ∈ H1 and µ ∈ H∗2 , w ∈ H2.

Proof. From Lemma 3.7, one knows that

Lλ,w(v) ,
∫
G

σ−λ,v(x)π(x)wdx

is a G-homomorphism. Since H1 and H2 are not G-isomorphic, from Proposition
3.2 one co that Lλ,w = 0. The first assertion follows by regarding v as fixed and
w ∈ H2 as a variable.

To prove the relation (3.11), let λ ∈ H∗1 , v ∈ H1 and µ ∈ H∗2 , w ∈ H2 be given
fixed. Suppose that w′ ∈ H2 is the vector representing µ, i.e. µ(·) = 〈·, w2〉H2 .
Then one has

〈σλ,v, πµ,w〉L2 =

∫
G

λ(σ(x)v)〈π(x)w,w′〉H2dx

=

∫
G

λ(σ(x)v)〈w, π(x−1)w′〉H2dx (π is unitary)

=

∫
G

λ(σ(x)v)〈π(x−1)w′, w〉H2dx

=

∫
G

λ(σ(x−1)v)〈π(x)w′, w〉H2dx

= 0,

where the last step follows from the fact that∫
G

λ(σ(x−1)v)π(x)w′dx = Lλ,w′(v) = 0.

Therefore, the relation (3.11) follows.
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Next, we consider the action of characters. Let χσ and χπ be the characters
of σ and π respectively.

Proposition 3.6. The function χ−σ acts trivially on H2. In addition, one has the
following orthogonality relations:

χσ ∗ χπ = 0, 〈χσ, χπ〉L2 = 0. (3.12)

Proof. Since the character is a sum of matrix coefficients, the first assertion follows
directly from Proposition 3.5. For the second assertion, note from Proposition 3.5
that ∫

G

λ(σ(ax−1)v)π(x)wdx = 0

for any a ∈ G (consider v 7→ λ(σ(a)v) as the functional λ in the proposition).
Therefore, ∫

G

λ(σ(ax−1)v)µ(π(x)w)dx = 0 (3.13)

for any λ, v, a, µ, w belonging to the relevant spaces. Now let {e1, · · · , em} and
{e′1, · · · , e′n} be ONB’s of H1 and H2 respectively. It follows from (3.13) that

χσ ∗ χπ(a) =

∫
G

χσ(ax−1)χπ(x)dx

=
∑
i,j

∫
G

〈σ(ax−1)ei, ei〉H1〈π(x)e′j, e
′
j〉H2dx

= 0. (3.14)

This yields the first relation in (3.12). The second relation follows from (3.14) by
taking a = e, together with the fact that

χπ(x−1) = χπ(x). (3.15)

Corollary 3.2. Let π : G → Aut(H) be a non-trivial, unitary irreducible repre-
sentation. Then ∫

G

λ(π(x)v)dx = 0 ∀λ ∈ H∗, v ∈ H.

In particular, ∫
G

χ(x)dx = 0

where χ is the character of π.

67



Proof. The trivial unitary representation

σ : G→ S1, σ(x) = 1 ∀x

has matrix coefficients
σλ,v(x) = λ(v), x ∈ G

and character χσ = 1. Since π is non-trivial, it is not G-isomorphic to the trivial
representation. The result follows from Proposition 3.5 and Proposition 3.6.

The isomorphic case

We now examine the situation when the two representations σ, π areG-isomorphic.
Without loss of generality, one may assume that σ = π and H1 = H2 = H.We are
interested in how the matrix coefficients and character act on H. Let dπ , dimH.

We first consider the action of matrix coefficients.

Proposition 3.7. For any λ ∈ H∗, v ∈ H, the action of π−λ,v on H is the rank-one
projection operator onto Span{v} given by

π1(π−λ,v)(w) =
λ(w)

dπ
v, w ∈ H.

Proof. Given λ ∈ H∗ and w ∈ H, recall from Lemma 3.7 that the operator

v 7→ Lλ,w(v) , π1(π−λ,v)(w)

defines a G-homomorphism on H. According to Proposition 3.2 (ii), one has

Lλ,w(v) = cv, v ∈ H (3.16)

for some constant c ∈ C.
To complete the proof, it remains to determine the constant c. For this pur-

pose, we take trace on both sides of (3.16). Note that

Tr(Lλ,w) =

∫
G

Tr[v 7→ λ(π(x−1)v)π(x)w]dx.

The operator inside the trace function on the right hand side is of the form

v 7→ µ(v)w′
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where µ is a linear functional on H and w′ ∈ H is fixed. Simple linear algebra
shows that the trace of such an operator is given by µ(w′). Therefore,

Tr(Lλ,w) =

∫
G

λ(π(x−1)π(x)w)dx = λ(w) ·
∫
G

dx = λ(w).

It follows from (3.16) that λ(w) = c · dπ, or equivalently, c = λ(w)
dπ
.

Proposition 3.7 implies the following important orthogonality relation for ma-
trix coefficients. Let {e1, · · · , edπ} be a given ONB of H.

Proposition 3.8. The associated matrix coefficients

πij(x) , 〈π(x)ei, ej〉H , 1 6 i, j 6 dπ

are orthogonal to each other. More precisely, one has

〈πij, πkl〉L2 =
1

dπ
δikδjl. (3.17)

Proof. According to Proposition 3.7, one has

〈πij, πkl〉L2 =

∫
G

〈π(x)ei, ej〉H · 〈π(x)ek, el〉Hdx

=

∫
G

〈π(x−1)el, ek〉H〈π(x)ei, ej〉Hdx

=
1

dπ
〈ei, ek〉H〈el, ej〉H

=
1

dπ
δikδjl.

Proposition 3.7 also immediately yields the action of the character.

Proposition 3.9. Let χπ be the character of π. Then

π1(χ−π ) =
1

dπ
Id.

In addition, one has

χπ ∗ χπ =
1

dπ
χπ, 〈χπ, χπ〉L2 = 1. (3.18)

69



Proof. Let {e1, · · · , edπ} be an ONB of H. From Proposition 3.7, one has

π1(χ−π )(v) =
dπ∑
i=1

π1(π−ei,ei) =
dπ∑
i=1

〈v, ei〉H
dπ

ei =
v

dπ
.

The first assertion thus follows. The argument for the second assertion follows
the same line as the proof of (3.12). According to Proposition 3.7, one has∫

G

λ(π(a)π(x−1)v)π(x)wdx =
λ(π(a)w)

dπ
v

for any λ ∈ H∗, v, w ∈ H and a ∈ G. Given a ∈ G, note that

{e′i , π(a−1)ei : 1 6 i 6 dπ}

is also an ONB of H. Therefore,

χπ ∗ χπ(a) =

∫
G

χπ(ax−1)χπ(x)dx

=
dπ∑
i,j=1

∫
G

〈π(ax−1)ei, ei〉H〈π(x)e′j, e
′
j〉Hdx

=
dπ∑
i,j=1

1

dπ
〈e′j, π(a−1)ei〉H〈ei, e′j〉H

=
dπ∑
i=1

1

dπ
〈ei, π(a−1)ei〉H =

dπ∑
i=1

1

dπ
〈π(a)ei, ei〉H

=
1

dπ
χπ(a).

The first part of (3.18) thus follows. The second part is obtained by taking a = e,
together with the observations (3.15) and

χπ(e) =
dπ∑
i=1

〈π(e)ei, ei〉H = dπ.
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Summary of Schur’s orthogonality relations

We summarise the orthogonality relations for the matrix coefficients and charac-
ters as below. These results are often known as Schur’s orthogonality relations.
Let σ : G→ Aut(H1) and π : G→ Aut(H2) be two unitary irreducible represen-
tations. We write σ ∼ π (respectively, σ � π) to denote the case when H1 and
H2 are G-isomorphic (respectively, not G-isomorphic).

(i) Let λ ∈ H∗1 , v ∈ H1. Then

π1(σ−λ,v)(·) =

{
0, σ � π;
λ(Φ−1(·))Φ(v)

dπ
, σ ∼ π,

(3.19)

where Φ : H1 → H2 denotes the underlying G-isomorphism in the second case.
(ii) The characters χσ and χπ satisfy the relation:

π1(χ−σ ) =

{
0, σ � π;
1
dπ

Id, σ ∼ π,

and

χσ ∗ χπ =

{
0, σ � π;
1
dπ
χπ, σ ∼ π,

〈χσ, χπ〉L2 =

{
0, σ � π;

1, σ ∼ π.
(3.20)

3.3.5 Completing the proof of the Peter-Weyl theorem

Using the idea of matrix coefficients, we can now prove Part (iii) and Part (iv) of
the Peter-Weyl theorem concerning with general representations.

Proof of Theorem 3.1, Part (iii). Let σ : G → Aut(H) be a unitary irreducible
representation andH 6= {0}. Suppose on the contrary thatH does not occur in the
decomposition (3.6) of L2(G). Let ψ be an arbitrary matrix coefficient associated
with σ. According to Proposition 3.5, ψ acts trivially on each component of the
L2(G)-decomposition. As a result, ψ− acts trivially on L2(G). In view of Lemma
3.3, one has

T 1(ψ−)f = f ∗ ψ = 0 ∀f ∈ L2(G).

A standard application of approximation of identity shows that ψ = 0. Since ψ
is arbitrary, one finds that H = {0} which is a contradiction. Therefore, H must
occur in the decomposition (3.6).
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Finally, we prove the complete irreducibility of a general unitary representa-
tion.

Proof of Theorem 3.1, Part (iv). Let π : G → Aut(H) be a unitary representa-
tion. In the same way as the proof of Proposition 3.1, the key point is to establish
the existence of a non-trivial finite dimensional irreducible subspace of H. After
that, the rest of the argument is a standard application of Zorn’s lemma. Because
of finite dimensionality, one only needs to prove the existence of a non-trivial finite
dimensional π-invariant subspace.

To this end, let w be a non-zero vector in H. By using approximation of
identity and the denseness of matrix coefficients (cf. Theorem 3.4), one can find
a matrix coefficient f of G such that∫

G

f(x−1)π(x)wdx 6= 0.

Since f is a matrix coefficient, there is a finite dimensional representation σ : G→
Aut(H1) and some λ ∈ H∗1 , v0 ∈ H1, such that

f(x) = λ(σ(x)v0).

Recall from Lemma 3.7 that the linear operator Lλ,w : H1 → H defined by

Lλ,w(v) ,
∫
G

λ(σ(x−1)v)π(x)wdx, v ∈ H1

is a G-homomorphism. Since

Lλ,w(v0) =

∫
G

f(x−1)π(x)wdx 6= 0,

one sees that W , Lλ,w(H1) is a non-trivial finite dimensional subspace of H,
which is clearly π-invariant.

3.4 Fourier analysis on compact Hausdorff groups

Having all the previous structures at hand, we can now discuss the associated
Fourier analysis. Let G be a compact Hausdorff group. Let Π be the enumeration
of isomorphism classes of unitary irreducible representations of G. Such an enu-
meration exists since all unitary irreducible representations are contained in the
L2(G)-decomposition according to the Peter-Weyl theorem. We sometimes write
(π,Hπ) to keep track of the underlying Hilbert space on which π acts.
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3.4.1 The spectral decomposition

For each isomorphism class [π] ∈ Π, let L2(G)π be the space of matrix coefficients
associated with π. Note that L2(G)π is a finite dimensional subspace (of dimension
at most d2

π) of L2(G) which depends only on the isomorphism class [π].

Theorem 3.5. (i) Given [(π,Hπ)] ∈ Π, let {e1, · · · , edπ} be an ONB of Hπ. Then

{d1/2
π 〈π(x)ei, ej〉H : 1 6 i, j 6 dπ} (3.21)

form an ONB of L2(G)π. In particular, one has

dimL2(G)π = d2
π.

(ii) The space L2(G) admits the following canonical decomposition:

L2(G) =
⊕
[π]∈Π

L2(G)π. (3.22)

As a result of Part (i), L2(G) has an ONB given by orthonormal matrix coefficients
associated with isomorphic classes of representations in Π.

Proof. Schur’s orthogonality relations imply that (3.21) is an ONB of L2(G)π, and
L2(G)σ ⊥ L2(G)π if σ, π ∈ Π are not G-isomorphic. The decomposition (3.22)
follows from the denseness of matrix coefficients in L2(G).

An important consequence of Theorem 3.5 is the uniqueness of the Peter-Weyl
decomposition for the regular representation.

Corollary 3.3. Suppose that

L2(G) =
⊕
i∈I

Wi (3.23)

is an orthogonal decomposition of L2(G) into T -irreducible subspaces. Then each
component Wi occurs for precisely di , dimWi times (up to G-isomorphism).

Proof. Exactly the same argumet for Theorem 3.1, Part (ii) and Part (iii) shows
that all unitary irreducible representations are contained in the decomposition
(3.23) and occur for at most finitely many times. As a result, one can rewrite the
given decomposition as

L2(G) =
⊕

[(π,Hπ)]∈Π

(
W π

1 ⊕ · · · ⊕W π
rπ

)
,
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where W π
1 , · · · ,W π

rπ are G-isomorphic to Hπ for each [(π,Hπ)] ∈ Π. It is sufficient
to show that

W π
1 ⊕ · · · ⊕W π

rπ = L2(G)π. (3.24)

To this end, the key observation is that W π
i ⊆ L2(G)π (1 6 i 6 rπ). Indeed,

let Φi : Hπ → W π
i be a G-isomorphism. We regard Φi as a linear embedding into

L2(G). Then for any v ∈ Hπ and ϕ ∈ C(G), one has

〈π(x)Φ∗iϕ, v〉Hπ = 〈ϕ,Φiπ(x−1)v〉L2

=

∫
G

ϕ(y)Φi(π(x−1)v)(y)dy

=

∫
G

ϕ(y)T (x−1)(Φiv)(y)dy

=

∫
G

ϕ(y)(Φiv)(yx−1)dy

=
(
(Φiv)∗ ∗ ϕ

)
(x), (3.25)

where we recall that ψ∗(x) , ψ(x−1). Since the left hand side of (3.25) is an
element of L2(G)π (for every ϕ ∈ C(G)), by approximation of identity one sees
that (Φiv)∗ ∈ L2(G)π. But one also knows that L2(G)π is (·)∗-closed:

f(x) = 〈π(x)v, w〉Hπ ∈ L2(G)π =⇒ f ∗(x) = 〈π(x)w, v〉Hπ ∈ L2(G)π.

Therefore, Φiv ∈ L2(G)π. This shows that W π
i = Φi(Hπ) ⊆ L2(G)π. In particular,

W π
1 ⊕ · · · ⊕W π

rπ ⊆ L2(G)π,

and one also has rπ 6 dπ since dimL2(G)π = d2
π. Theorem 3.5 (ii) implies rπ = dπ

and thus (3.24) holds.

As a result of Corollary 3.3, L2(G) is isometrically isomorphic to the orthogonal
direct sum of all unitary irreducible representations of G, each occurring with
multiplicity equal to its dimension. Formally, one can write

L2(G) =
⊕

[(π,Hπ)]∈Π

dπHπ.

3.4.2 The Fourier inversion formula and Plancherel’s theorem

We now make precise the Fourier inversion formula (3.2) and Plancherel’s theorem
(3.3) stated in the introduction of this section.
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Let (π,Hπ) be a unitary irreducible representation of G. The space L(Hπ)
of bounded linear operators on Hπ is a d2

π-dimensional Hilbert space under the
Hilbert-Schmidt inner product

〈S, T 〉HS , Tr(ST ∗).

Define a linear map ιπ : L(Hπ)→ L2(G) by

ιπ(S) , [x 7→ fS(x) , 〈S, π(x)∗〉HS].

By definition,

fS(x) = Tr(Sπ(x)) = Tr(π(x)S) =
dπ∑
i=1

〈π(x)Sei, ei〉Hπ

where {e1, · · · , edπ} is an ONB of Hπ. In particular, fS ∈ L2(G)π.

Lemma 3.8. The linear map d1/2
π ιπ : L(Hπ) → L2(G)π is an isometric isomor-

phism.

Proof. Since dimHπ = dimL2(G)π = d2
π, one only needs to check that

〈ιπS, ιπT 〉L2 =
1

dπ
〈S, T 〉HS, S, T ∈ L(Hπ). (3.26)

As both sides of (3.26) are bilinear in (S, T ), it is enough to verify the identity for
S, T having the form

S(v) = λ(v)ei, T (v) = µ(v)ej,

where λ, µ ∈ H∗π and {e1, · · · , edπ} is an ONB of Hπ.
By definition, one has

(ιπS)(x) = Tr(π(x)S) =
∑
k

〈π(x)S(ek), ek〉Hπ =
∑
k

λ(ek)〈π(x)ei, ek〉.

Therefore,

〈ιπS, ιπT 〉L2 =
∑
k,l

λ(ek)µ(el)

∫
G

〈π(x)ei, ek〉Hπ〈π(x)ej, el〉Hπdx

=
∑
k,l

λ(ek)µ(el)〈πik, πjl〉L2

=
1

dπ

∑
k

λ(ek)µ(ek)δij,
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where the last equality follows from the relation (3.17). On the other hand,

〈S, T 〉HS = Tr(ST ∗) = Tr(T ∗S)

=
∑
k

〈T ∗Sek, ek〉Hπ =
∑
k

〈Sek, T ek〉Hπ

=
∑
k

λ(ek)µ(ek)〈ei, ej〉Hπ =
∑
k

λ(ek)µ(ek)δij.

The identity (3.26) thus follows.

We regard ιπ as a linear embedding from L(Hπ) into L2(G). Using ιπ and
its adjoint ι∗π : L2(G) → L(Hπ), one can write down the orthogonal projection
Pπ : L2(G)→ L2(G)π precisely.

Proposition 3.10. The projection Pπ is given by

Pπf = dπιπι
∗
πf = dπf ∗ χπ, (3.27)

where the operator ι∗π is explicitly given by

ι∗πf = π1(f−) =

∫
G

f(x−1)π(x)dx (3.28)

and χπ is the character of π.

Proof. The first part of equation (3.27) is an immediate consequence of Lemma
3.8. In addition, for each S ∈ L(Hπ) and f ∈ L2(G), one has

〈f, ιπS〉L2 =

∫
G

f(x)(ιπS)(x)dx =

∫
G

f(x)Tr(Sπ(x))dx

=

∫
G

f(x)Tr((Sπ(x))∗)dx =

∫
G

f(x)Tr(π(x)∗S∗)dx

= 〈
∫
G

f(x)π(x)∗dx, S〉HS = 〈
∫
G

f(x−1)π(x)dx, S〉HS.

Therefore, the equation (3.28) holds. The second part of equation (3.27) follows
from the fact that

(ιπι
∗
πf)(x) = Tr(ι∗πf · π(x)) =

∫
G

f(y)Tr(π(y)∗π(x))dy

=

∫
G

f(y)Tr(π(y−1x))dy =

∫
G

f(y)χπ(y−1x)dy

= (f ∗ χπ)(x).
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Remark 3.5. From Schur’s orthogonality relation (3.19), one has

ι∗πf = π1(f−) =

{
0, f ∈ L2(G)⊥π ;
λ(·)v
dπ
, f = πλ,v ∈ L2(G)π.

Definition 3.11. Let f ∈ L2(G). For each unitary irreducible representation
(π,Hπ) of G, the operator ι∗πf ∈ L(Hπ) is called the Fourier coefficient of f at π
and is denoted as f̂(π).

Next, we establish the Fourier inversion formula and Plancherel’s theorem. Let
f ∈ L2(G) and let {f̂(π) : [π] ∈ Π} be its collection of Fourier coefficients. Note
that we pick one representative for each isomorphism class [π] ∈ Π.

Theorem 3.6. (i) The Fourier inversion formula:

f(x) =
∑
[π]∈Π

dπ〈f̂(π), π(x)∗〉HS in L2(G).

(ii) Plancherel’s theorem:

‖f‖2
L2 =

∑
[π]∈Π

dπ‖f̂(π)‖2
HS. (3.29)

Proof. The inversion formula follows immediately from Theorem 3.5 and Propo-
sition 3.10. To prove Plancherel’s theorem, note from Lemma 3.8 that d1/2

π ιπ :
L(Hπ)→ L2(G)π is an isometry with inverse d1/2

π ι∗π. As a result, one has

‖Pπf‖2
L2 = ‖(d1/2

π ι∗π)Pπf‖2
HS = dπ‖f̂(π)‖2

HS.

The identity (3.29) thus follows.

Remark 3.6. Using the second part of the equation (3.27), one can express the
inversion formula as

f(x) =
∑
[π]∈Π

dπ(f ∗ χπ)(x).

In addition, from the relation (3.28) one can also write Plancherel’s theorem as

‖f‖2
L2 =

∑
[π]∈

dπTr(π1(f−)π1(f−)∗).

To conclude the theory, we examine a special class of functions in L2(G), for
which the L2(G)-expansion takes a particularly nice form in terms of characters.
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Definition 3.12. A function f ∈ L2(G) is said to be a class function, if

f(yxy−1) = f(x)

for all x, y ∈ G. The closed subspace of class functions in L2(G) is denoted as
L2(G)G.

It is clear that characters are class functions. In addition, one has the following
characterisation of class functions.

Lemma 3.9. A function f ∈ L2(G) is a class function if and only if its Fourier
coefficient f̂(π) is a G-homomorphism for each [π] ∈ Π.

Proof. Suppose that f is a class function. Then

π(y)f̂(π)π(y−1) =

∫
G

f(x)π(y)π(x)∗π(y−1)dx

=

∫
G

f(x)π(yx−1y−1)dx

=

∫
G

f(yzy−1)π(z−1)dz = f̂(π).

Therefore, f̂(π) commutes with G-actions. Conversely, by using the inversion
formula, one has

f(yxy−1) =
∑
[π]∈Π

dπ〈f̂(π), π(yxy−1)∗〉HS

=
∑
[π]∈Π

dπTr
(
f̂(π)π(y)π(x)π(y−1)

)
=
∑
[π]∈Π

dπTr
(
π(y−1)f̂(π)π(y)π(x)

)
=
∑
[π]∈Π

dπTr(f̂(π)π(x)) = f(x).

Let f ∈ L2(G)G be a class function. Since f̂(π) is a G-homomorphism, from
Proposition 3.2, Part (ii), one knows that f̂(π) = cπ · Id for some cπ ∈ C. The
constant cπ can be found by taking trace on both sides:

cπ · dπ = Tr(f̂(π)) =

∫
G

f(x)Tr(π(x)∗)dx = 〈f, χπ〉L2 .
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Therefore, cπ = 1
dπ
〈f, χπ〉L2 . The inversion formula for f becomes

f =
∑
[π]∈Π

dπ〈cπId, π(x)∗〉HS =
∑
[π]∈Π

〈f, χπ〉L2χπ.

As a consequence, the family {χπ : [π] ∈ Π} form an ONB of L2(G)G.

3.5 Two examples: the torus and the special unitary group
SU(2)

We use two basic examples to illustrate the previous general theory. The first
one is the abelian case in which the theory reduces to classical Fourier series.
The second one is the simplest non-abelian example in which calculations can be
performed explicitly.

3.5.1 The torus Td: classical Fourier series

The d-dimensional torus is the compact Lie group

Td , S1 × · · · × S1︸ ︷︷ ︸
d times

= {(eiθ1 , · · · , eiθd) : (θ1, · · · , θd) ∈ [0, 2π)d}.

Note that
Td ∼= (R/Z)d ∼= Rd/Zd.

The torus Td is an abelian group. Let dθ denote the normalised Haar measure
on S1. If d+θ denotes the Lebesgue measure on [0, 2π), then dθ = 1

2π
d+θ. The

normalised Haar measure on Td is given by dθ1 × · · · × dθd.
The following result is quoted from the classical theory of Fourier series. We

parametrise Td by θ = (θ1, · · · , θd) ∈ [0, 2π)d.

Theorem 3.7. Every f ∈ L2(Td) admits the following L2-expansion:

f(θ) =
∑

k=(k1,··· ,kd)∈Zd
cfk · e

i〈k,θ〉,

where
cfk , 〈f, e

i〈k,·〉〉L2 =

∫
T d
f(θ)e−i〈k,θ〉dθ. (3.30)

In addition, the following identity holds:

‖f‖2
L2 =

∑
k∈Zd

∣∣cfk∣∣2. (3.31)
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To see how this classical result fits into the previous general theory, first note
that every k ∈ Zd gives rise to a (one dimensional) unitary irreducible represen-
tation

πk : Td → S1, πk(θ) = ei〈k,θ〉, (3.32)
where the action on C is given by the complex multiplication. Indeed, these are
all the possible unitary irreducible representations of Td.

Proposition 3.11. Let π : Td → Aut(H) be a unitary irreducible representation
of Td. Then H is one dimensional and π is G-isomorphic to one of the represen-
tations πk given by (3.32).

Proof. Recall that H is finite dimensional. Since Td is abelian and π(x) is unitary
on H, from linear algebra one knows that the family A , {π(x) : x ∈ Td} is
simultaneously diagonalisable. In particular, H decomposes into an orthogonal
direct sum of one dimensional common eigenspaces for A. Since π is irreducible,
one concludes that H has to be one dimensional. To reach the second assertion,
by unitarity for each θ ∈ Td there is a λ(θ) ∈ R (mod 2πZ) such that

π(θ)v = eiλ(θ)v, ∀θ ∈ Td and v ∈ H.

This function λ satisfies

λ(θ1 + θ2) = λ(θ1) + λ(θ2) mod 2πZ,

which implies λ(θ) = 〈k,θ〉 (mod 2πZ) for some k ∈ Zd (why?). Therefore,
π = πk.

We can now interpret Theorem 3.7 in the context of the general Theorem
3.6. The class of unitary irreducible representations are indexed by k ∈ Zd. The
Fourier coefficient of f at each k is given by

f̂(k) =

∫
Td
f(θ)πk(θ)∗dθ =

∫
Td
f(θ)e−i〈k,θ〉dθ = cfk,

which is equivalently viewed as an operator on C acting by complex multiplication.
In addition, one has dπk = 1 and

〈f̂(k), πk(θ)∗〉HS = cfk · Tr(πk(θ)) = cfke
i〈k,θ〉.

Therefore, the identities (3.30) and (3.31) are precisely the Fourier inversion for-
mula and Plancherel’s theorem. The function ei〈k,θ〉 is also the character of πk
and all functions in L2(Td) are class functions due to commutativity.
Remark 3.7. It is known that any compact, connected, abelian Lie group with
dimension d is isomorphic to the torus Td.
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3.5.2 SU(2): non-abelian Fourier analysis

We now consider the simplest example of a non-abelian compact Lie group on
which the Fourier analysis can be worked out explicitly.

Definition 3.13. The special unitary group of degree two is the group of 2 × 2
unitary matrices with determinant one:

SU(2) ,

{(
α −β̄
β ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

The geometry of SU(2) and its Haar measure

From its definition, SU(2) is canonically diffeomorphic to the 3-sphere

S3 = {(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 = 1}.

The identification is given by

Φ : S3 3 (x1, x2, x3, x4) 7→
(
x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2

)
∈ SU(2).

Lemma 3.10. Let g ∈ SU(2). Define its action on S3 from the right by

Rg(x) , Φ−1(Φ(x)g), x ∈ S3.

Then Rg is a special orthogonal transformation, i.e. Rg ∈ SO(4).

Proof. We extend the map Φ to the entire R4 which becomes a linear isomorphism
onto its image. It is obvious that

det Φ(x) = ‖x‖2
R4 ∀x ∈ R4.

Therefore,

‖Rg(x)‖2
R4 = det(Φ(x)g) = det(Φ(x)) det(g) = ‖x‖2

R4 .

This shows that Rg ∈ O(4). Since SU(2) ∼= S3 is connected, g 7→ Rg is continuous
and Re = Id, one sees that Rg ∈ SO(4).
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To write down the Haar measure explicitly, we introduce the following parametri-
sation (under the identification Φ):{

x1 = cos θ, x3 = sin θ sinϕ cosψ,

x2 = sin θ cosϕ, x4 = sin θ sinϕ sinψ,
(3.33)

where 0 < θ < π, 0 < ϕ < π and 0 < ψ < 2π. This is obtained by setting x1 ,
cos θ and thinking of (x2, x3, x4) as a generic point on the 2-sphere with radius sin θ.
The parametrisation of (x2, x3, x4) is the standard spherical parametrisation. Note
that (θ, ϕ, ψ) does not provide a global coordinate system for SU(2). Nonetheless,
the points that are missed out form a low dimensional manifold which does not
affect calculations related to Haar measures and Haar integrals.

Under the coordinates (3.33), the standard Riemannian metric on S3 is found
to be

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4

= dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdψ2.

As a result, the volume form on S3 is given by

µ =
√

det(gij)dθdϕdψ = sin2 θ sinϕdθdϕdψ.

According to Lemma 3.10, SU(2) acts on S3 (from the right) as isometries, hence
leaving µ invariant. Therefore, when viewed as a measure on SU(2) (under the
identification Φ) it is right invariant. After normalisation, one obtains the follow-
ing fact.

Proposition 3.12. Under the coordinates (3.33), the normalised Haar measure
on SU(2) is given by

dx =
1

2π2
sin2 θ sinϕdθdϕdψ.

Classification of unitary irreducible representations

Our next goal is to classify all unitary irreducible representations of SU(2). We
first write down the natural ones and then show that these are the only possibili-
ties.

For each non-negative integer n, let Hn denote the space of degree n homoge-
neous polynomials in two complex variables. More explicitly,

Hn =
{ n∑
k=0

akz
k
1z

n−k
2 : (a0, · · · , an) ∈ Cn+1

}
.
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It is clear that dimHn = n+ 1. A natural action of SU(2) on Hn is defined by

πn(g)(ϕ)(z) , ϕ(zg), g ∈ SU(2), ϕ ∈ Hn.

Here z = (z1, z2) is a row vector and zg is the usual matrix multiplication. A
simple unwinding of definition shows that πn is a representation of SU(2) on Hn.
We define an inner product on Hn by

〈(a0, · · · , an), (b0, · · · , bn)〉Hn ,
n∑
k=0

k!(n− k)!akbk. (3.34)

The reason for introducing the coefficients k!(n− k)! is to make πn into a unitary
representation.

Lemma 3.11. Under the inner product structure (3.34), πn : SU(2)→ Aut(Hn)
is a unitary representation.

Proof. For each column vector a = (a1, a2)T ∈ C2, we define ϕa ∈ Hn by

ϕa(z) , (za)n = (a1z1 + a2z2)n.

Then

〈ϕa, ϕb〉Hn = 〈(a1z1 + a2z2)n, (b1z1 + b2z2)n〉Hn

=
n∑
k=0

(
n

k

)2

k!(n− k)!ak1a
n−k
2 b1

k
b2
n−k

= n!(a1b1 + a2b2)n = n!〈a, b〉nC2 .

In addition, by definition one has

(πn(g)ϕa)(z) = ϕa(zg) = (zga)n = ϕga(z).

Therefore,

〈πn(g)ϕa, πn(g)ϕb〉Hn
= 〈ϕga, ϕgb〉Hn = n!〈ga, gb〉nC2

= n!〈a, b〉nC2 = 〈ϕa, ϕb〉Hn .

This implies that πn is unitary on the subspace generated by the ϕa’s.
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It remains to show that, the family {ϕa : a ∈ C2} contains a basis of Hn so
that it generates Hn. In fact, we claim that the n+ 1 functions

(z1 + ωkz2)n (k = 0, 1, · · · , n− 1) and zn2

form a basis of Hn, where ω , e2πi/n. One only needs to show their linear
independence. Suppose that

n−1∑
k=0

ck(z1 + ωkz2)n + cnz
n
2 = 0

with some constants c0, · · · , cn. By considering the coefficient of zj1z
n−j
2 for each

0 6 j 6 n, one obtains the following linear system:{∑n−1
k=0 ckω

jk = 0, j = 0, 1, · · · , n− 1;∑n
k=0 ck = 0.

After expanding along the last column, the determinant of the coefficient matrix
is precisely the Vandermonde determinant∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

∣∣∣∣∣∣∣∣∣∣∣
=

∏
06j<k6n−1

(ωk − ωj) 6= 0.

Therefore, c0 = c1 = · · · = ck = 0.

By using the criterion given by Lemma 3.2, one can show that πn is irreducible.

Lemma 3.12. The representation πn is irreducible.

Proof. According to Lemma 3.2, one only needs to show that every SU(2)-homomorphism
on Hn is a scalar multiple of the identity map. Let A be such a homomorphism.
For each 0 6 k 6 n we set ϕk(z) , zk1z

n−k
2 . Let K be the subgroup of SU(2)

consisting of the matrices ha ,
( a 0

0 a−1

)
(a ∈ S1). The action of ha on Hn is

simple to describe: (
πn(ha)ϕk

)
(z) = ϕk(zha) = a2k−nϕk(z). (3.35)
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Using this observation, it can be seen that a function ϕ ∈ Hn is proportional to
ϕk if and only if πn(ha)ϕ = a2k−nϕ for all a ∈ S1.

On the other hand, by the assumption one has

πn(ha)Aϕk = Aπn(ha)ϕk = a2k−nAϕk ∀a ∈ S1.

Therefore, Aϕk = ckϕk with some ck ∈ C. To show that all the ck’s are identical,

we use another subgroup R consisting of the matrices rt ,
( cos t − sin t

sin t cos t

)
(t ∈

[0, 2π)). Direct calculation shows that

Aπn(rt)ϕn = A(z1 cos t+ z2 sin t)n =
n∑
k=0

(
n

k

)(
cosk t sinn−k t

)
ckϕk,

while

πn(rt)Aϕn = cn

n∑
k=0

(
n

k

)(
cosk t sinn−k t

)
ϕk.

According to the assumption, one has

Aπn(rt)ϕn = πn(rt)Aϕn ∀t ∈ [0, 2π). (3.36)

By comparing the coefficients of ϕk on both sides, the relation (3.36) is possible
only when ck = cn for all k. Therefore, Aϕk = cnϕk for all k, showing that
A = cn · Id.

We now compute the character of πn. Before doing so, let us first observe that

every element g ∈ SU(2) is unitarily conjugate to a diagonal matrix
(
a 0
0 b

)
.

Since g is unitary with determinant one, the eigenvalues a, b must have the form
a = eiθ, b = e−iθ for some θ. As a result, any class function f on SU(2) is uniquely
determined by its values on the subgroup

K =

{
hθ ,

(
eiθ 0
0 e−iθ

)
: θ ∈ [−π, π]

}
.

In other words, f can be viewed as a function of hθ or θ. Such a function must
also be an even function in θ, since(

0 −1
1 0

)
·
(
eiθ 0
0 e−iθ

)
·
(

0 −1
1 0

)−1

=

(
e−iθ 0

0 eiθ

)
.
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Proposition 3.13. The character of πn is given by

χn(hθ) =
sin(n+ 1)θ

sin θ
, θ ∈ [−π, π]. (3.37)

Proof. According to the relation (3.35), πn(hθ) acts on the basis {ϕk : 0 6 k 6 n}
diagonally. Therefore,

χn(hθ) = Tr
(
πn(hθ)

)
=

n∑
k=0

ei(2k−n)θ =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin(n+ 1)θ

sin θ
.

Remark 3.8. When θ = 0 or π, the quotient in (3.37) is understood in the limiting
sense as θ → 0 or π. More explicitly, one has

χn(1) = n+ 1, χn(−1) = (−1)n(n+ 1).

Lemma 3.13. Let f ∈ L2(SU(2)) be a class function. Then∫
G

f(x)dx =
2

π

∫ π

0

f(hθ) sin2 θdθ.

Proof. The main observation is that

f(x) = f(θ, 0, 0) = f(hθ), (3.38)

where the first θ denotes the θ-coordinate of x under the parametrisation (3.33)
while the second hθ is the element to which x is unitarily conjugate. Indeed, since
detx = 1, the characteristic equation of x is given by t2 − Tr(x)t + 1 = 0, which
under the (θ, ϕ, ψ)-coordinates reduces to

t2 − 2t cos θ + 1 = 0.

It follows that the eigenvalues of x are given by e±iθ. In particular, x is unitarily
conjugate to hθ. Therefore, the relation (3.38) holds. The result follows from
Proposition 3.12 by integrating out the ϕ and ψ variables.

We can now establish the classification theorem for unitary irreducible repre-
sentations of SU(2).

Theorem 3.8. The representations πn (n > 0) are all distinct. In addition, any
non-trivial unitary irreducible representation of SU(2) is G-isomorphic to one of
the πn’s.
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Proof. The first assertion is trivial since the dimensions of the Hn’s are all dif-
ferent. For the second assertion, let (π,H) be a non-trivial unitary irreducible
representation of SU(2). Suppose on the contrary that π is distinct from all the
π′ns. Let χ(θ) be the character of π and define

ξ(θ) , χ(θ) sin θ, θ ∈ [−π, π].

We use
〈f1(θ), f2(θ)〉L2(S1) ,

1

2π

∫ π

−π
f1(θ)f2(θ)dθ

to distinguish from the L2-inner product on SU(2) for class functions, which is
given by

〈f1(θ), f2(θ)〉L2(SU(2)) =
2

π

∫ π

0

f1(θ)f2(θ) sin2 θdθ.

Since ξ(θ) is an odd function, elementary calculation together with the formula
(3.37) show that

〈ξ, e±inθ〉L2(S1) =
∓i
2
〈χ, χn−1〉L2(SU(2))

for each n > 1. In addition, one has 〈ξ, 1〉L2(S1) = 0. Therefore, from the classical
Parseval’s identity (3.31) one obtains

‖ξ‖2
L2(S1) =

∞∑
n=−∞

∣∣〈ξ, einθ〉L2(S1)

∣∣2 =
1

2

∞∑
n=0

∣∣〈χ, χn〉L2(SU(2))

∣∣2.
On the other hand, one also has

‖χ‖2
L2(SU(2)) =

2

π

∫ π

0

|χ(θ)|2 sin2 θdθ = 2‖ξ‖2
L2(S1).

As a result, one concludes that

‖χ‖2
L2(SU(2)) =

∞∑
n=0

∣∣〈χ, χn〉L2(SU(2))

∣∣2.
Since π is distinct from πn, from Schur’s orthogonality relation (3.20) one has

〈χ, χn〉L2(SU(2)) = 0 for each n, hence yielding χ = 0. This is a contradiction to
the fact that 〈χ, χ〉L2(SU(2)) = 1 in view of the same relation (3.20).
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Under the above classification, one can write down the corresponding Fourier
identities. For instance, Plancherel’s theorem reads

‖f‖2
L2 =

∞∑
n=0

(n+ 1)‖f̂(n)‖2
HS.

In addition, for any class function f = f(θ) one has

〈f, χn〉L2(SU(2)) =
2

π

∫ π

0

f(t) sin
(
(n+ 1)t

)
sin tdt.

Therefore, f̂(n) = cnId where

cn =
1

n+ 1
〈f, χn〉L2(SU(2)) =

2

(n+ 1)π

∫ π

0

f(t) sin
(
(n+ 1)t

)
sin tdt.

The inversion formula for f reads

f(θ) =
∞∑
n=0

2

π

( ∫ π

0

f(t) sin(n+ 1)t sin tdt
)
· sin(n+ 1)θ

sin θ

with convergence understood in the L2-sense with respect to the measure 2
π

sin2 θdθ.

Remark 3.9. Under suitable smoothness conditions, it is possible to establish
pointwise and uniform convergence results for the inversion formula. This re-
quires deeper analysis for certain differential operators as well as Lie algebra con-
siderations. In the SU(2)-case, we refer the reader to [5] for a discussion on this
topic.

Remark 3.10. The representation theory for non-compact groups is much deeper
than the compact case and one must also consider infinite dimensional represen-
tations apart from the finite dimensional ones. We refer the reader to [3] for a
beautiful presentation in the simplest non-trivial example of SL2(R), which is a
real source of inspiration in many ways.
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Appendix A Set theory: Zorn’s lemma
In this appendix, we recall Zorn’s lemma from set theory, which is used in the
study of complete reducibility.

Let P be a given partially ordered set. A chain in P is a totally ordered subset
of P . An upper bound of a subset S ⊆ P is an element y ∈ P such that x 6 y for
every x ∈ S. A maximal element in P is an element that is not smaller than any
element in P .

Theorem A.1 (Zorn’s lemma). If every chain in P has an upper bound in P ,
then P contains at least one maximal element.

Appendix B General topology: Tychonoff’s theo-
rem and Urysohn’s theorem

In this appendix, we collect two fundamental theorems in general topology that
are used in the previous discussions of Radon measures and Haar integrals.

The first theorem concerns with product topology and compactness. Let {Xi :
i ∈ I} be a family of topological spaces. Define the product space

X ,
∏
i∈I

Xi.

The product topology on X is the coarsest topology (i.e. the topology with the
fewest open sets) such that the canonical projections πi : X → Xi (i ∈ I) are
continuous. This is the topology generated by the subsets of the form p−1

i (Ui)
where Ui is open in Xi. The following theorem, known as Tychonoff’s theorem,
asserts that compactness is preserved under the product topology.

Theorem B.1. Suppose that Xi is a compact space for every i ∈ I. Then X is
also compact under the product topology.

The next theorem, known as Urysohn’s lemma, allows us to construct suf-
ficiently many continuous functions on topological spaces. Recall that a normal
space is a topological space in which every two disjoint closed subsets have disjoint
open neighbourhoods.

Theorem B.2. Let F1, F2 be two disjoint closed subsets of a normal space X.
Then there exists a continuous function f : X → [0, 1] such that

f = 0 on F1 and f = 1 on F2.
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Appendix C Functional analysis
In this appendix, we collect several basic theorems in functional analysis that are
used in Section 3.

The first result is the Uniform Boundedness Theorem for bounded linear op-
erators, which asserts that pointwise boundedness implies uniform boundedness.

Theorem C.1. Let E be a Banach space, and let A be a family of bounded linear
operators on E. Suppose that

sup
A∈A
‖A(v)‖E <∞

for each v ∈ E. Then
sup
A∈A
‖A‖E→E <∞.

The next result is known as the Stone-Weierstrass theorem (the complex ver-
sion). It is rather useful when studying uniform approximations of continuous
functions.

Theorem C.2. Let X be a compact Hausdorff space. Let A ⊆ C(X) be a family
of complex-valued continuous functions satisfying the following properties:

(i) A is an algebra which contains constant functions and is self-conjugate:

f, g ∈ A, c ∈ C =⇒ c, cf + g, fg, f ∈ A.

(ii) A separate points: for any x 6= y ∈ X, there exists f ∈ A such that f(x) 6=
f(y).

Then A is dense in C(X) under the uniform topology.

The third result is the spectral theorem for compact self-adjoint operators on
Hilbert spaces. It generalises the classical spectral theorem for Hermitian matrices
to the infinite dimensional situation.

Theorem C.3. Let A be a compact self-adjoint operator on a Hilbert space H.
Then the following statements hold true:

(i) all eigenvalues of A are real, and for each η > 0 there are finitely many eigen-
values λ such that |λ| > η;
(ii) the eigenspace space Eλ corresponding to each non-zero eigenvalue λ is finite
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dimensional;
(iii) the space H admits a decomposition into the orthogonal direct sum of eigenspaces:

H =
⊕
λ

Eλ.

The last result we shall recall is the functional Schur’s lemma. It is particularly
useful in the study of infinite dimensional representations.

Theorem C.4. Let A be a family of bounded linear operators on a Hilbert space
H. Suppose that H is A-irreducible. Let Q be a self-adjoint bounded linear oper-
ator that commutes with A, i.e. QA = AQ for all A ∈ A. Then Q = c · Id for
some c ∈ C.
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